Temporal HeartNet: Towards Human-Level Automatic Analysis of Fetal Cardiac Screening Video

Weilin Huang, Christopher P. Bridge, J. Alison Noble, and Andrew Zisserman

Department of Engineering Science, University of Oxford, UK

MICCAI (12th September 2017)

Congenital Heart Disease (CHD)

- Range of structural heart defects present at birth
- Leading cause of infant mortality
 - ▶ 42% of infant deaths reported to WHO
- Heart examination during routine second trimester abnormality screening using **2D ultrasound**
- Multiple viewing planes
- Highly skilled

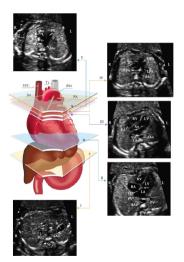
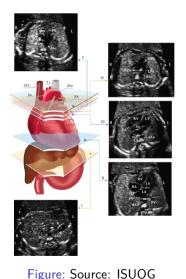


Figure: Source: ISUOG

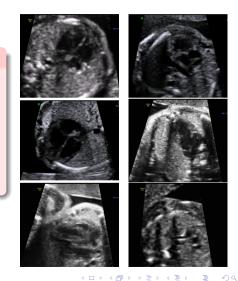
Huang et al. (University of Oxford)


Temporal HeartNe

Congenital Heart Disease (CHD)

- Range of structural heart defects present at birth
- Leading cause of infant mortality
 - ▶ 42% of infant deaths reported to WHO
- Heart examination during routine second trimester abnormality screening using **2D ultrasound**
- Multiple viewing planes
- Highly skilled

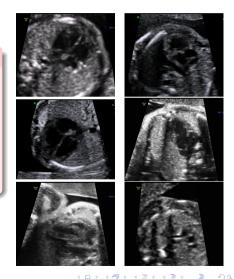
Aim


Can automated methods assist in analysing this video?

Challenges

Challenges

- Unconstrained video stream
- Unpredictable probe/fetal movement
- Variable orientation
- Imaging artefacts (speckle, shadowing, enhancement)
- Low contrast and indistinct structures



Challenges

Challenges

- Unconstrained video stream
- Unpredictable probe/fetal movement
- Variable orientation
- Imaging artefacts (speckle, shadowing, enhancement)
- Low contrast and indistinct structures

• How can we make sense of this raw video data?

- Interpret the video stream
- Estimate key low-level variables of interest:

- 32

イロト 不得 トイヨト イヨト

- Interpret the video stream
- Estimate key low-level variables of interest:
 - Heart Visibility, $h_t \in \{0, 1\}$
 - 2 Heart Centre Position, $\mathbf{x}_t \in \mathbb{R}^2$
 - **3** View Label, $v_t \in \{4C, LVOT, 3V\}$
 - ★ Four chamber
 - ★ Left Ventricular Outflow Tract
 - ★ Three vessels
 - (Heart Orientation, $\theta_t \in [0, 2\pi)$
 - **(5)** Heart Radius, $r_t \in \mathbb{R}^+$

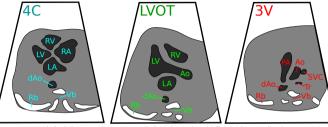
3

ふちょうちょ

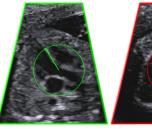
- Interpret the video stream
- Estimate key low-level variables of interest:
 - Heart Visibility, $h_t \in \{0, 1\}$
 - 2 Heart Centre Position, $\mathbf{x}_t \in \mathbb{R}^2$
 - **3** View Label, $v_t \in \{4C, LVOT, 3V\}$
 - ★ Four chamber
 - ★ Left Ventricular Outflow Tract
 - * Three vessels
 - Heart Orientation, $\theta_t \in [0, 2\pi)$
 - **(5)** Heart Radius, $r_t \in \mathbb{R}^+$

Summary

Find a basic 'global coordinate system' for each frame


- Interpret the video stream
- Estimate key low-level variables of interest:
 - Heart Visibility, $h_t \in \{0, 1\}$
 - 2 Heart Centre Position, $\mathbf{x}_t \in \mathbb{R}^2$
 - **3** View Label, $v_t \in \{4C, LVOT, 3V\}$
 - * Four chamber
 - ★ Left Ventricular Outflow Tract
 - * Three vessels
 - Heart Orientation, $\theta_t \in [0, 2\pi)$
 - **(5)** Heart Radius, $r_t \in \mathbb{R}^+$

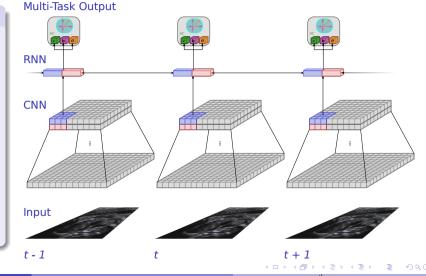
Summary


Find a basic 'global coordinate system' for each frame

• Prior work based on particle-filtering model (Bridge et al. 2017)

Viewing Plane Definitions

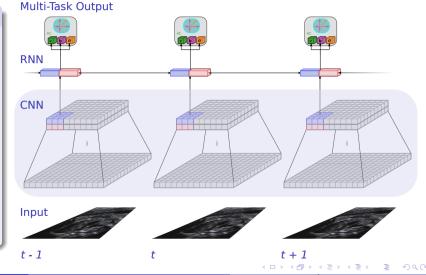
LV/RV left/right ventricle, LA/RA left/right atrium, (d)Ao (descending) aorta, PA pulmonary artery, SVC superior vena cava, Tr trachea, Vb vertebra, Rb ribs



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Components

- Spatial CNN (VGG-16)
- Temporal RNN (BLSTM)
- Multi-task Layers:
 - View
 - Location
 - Orientation
 - Radius
- Two alternatives:
 Circular anchors
 IoU

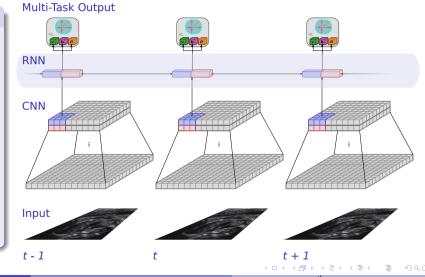

Huang et al. (University of Oxford)

Temporal HeartNet

Components

• Spatial CNN (VGG-16)

- Temporal RNN (BLSTM)
- Multi-task Layers:
 - View
 - Location
 - Orientation
 - Radius
- Two alternatives:
 Circular anchors
 IoU

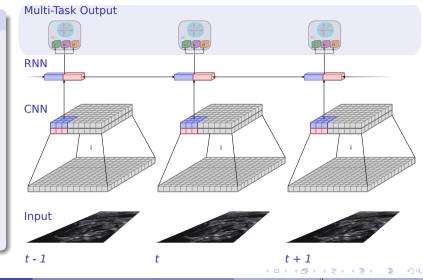

Temporal HeartNe

Components

• Spatial CNN (VGG-16)

• Temporal RNN (BLSTM)

- Multi-task Layers:
 - View
 - Location
 - Orientation
 - Radius
- Two alternatives:
 Circular anchors
 IoU


Temporal HeartNet

Components

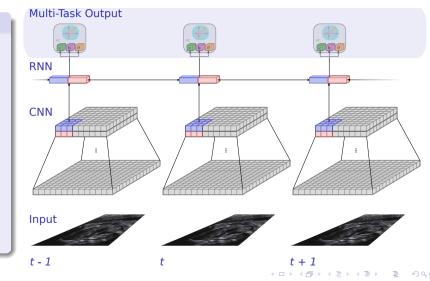
• Spatial CNN (VGG-16)

- Temporal RNN (BLSTM)
- Multi-task Layers:
 - View
 - Location
 - Orientation
 - Radius

• Two alternatives: Circular anchors IoU

Huang et al. (University of Oxford)

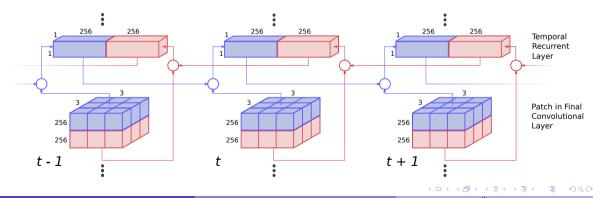
Temporal HeartNet


Components

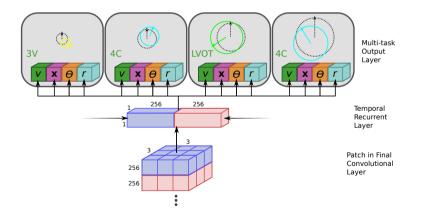
• Spatial CNN (VGG-16)

- Temporal RNN (BLSTM)
- Multi-task Layers:

View Location Orientati


- Radius
- Two alternatives:
 - Circular anchors
 IoU

Temporal HeartNet


Bi-directional LSTM RNN

- Recurrent 512-D representation for an image region
- LSTM (long short-term memory) cells learn long-term dependencies
- Parameters shared between image regions
- Bi-directional: Two separate 256-D recurrent vectors: one forwards, one backwards

Multi-Task Prediction Architecture 1: 'Circular Anchors'

 Independently predict offsets from four *circular anchors* with radii {80, 120, 160, 240} (Ren et al. 2015, "Faster R-CNN")

Training – Circular Anchor Architecture

- Loss functions:
 - L_{cls} Classification (v): Softmax
 - L_{loc} Localisation (\mathbf{x}, θ, r) : Smooth- I_1 loss
 - Total:

 $L = L_{cls} + \lambda_1 L_{loc}$

- 31

Training – Circular Anchor Architecture

- Loss functions:
 - L_{cls} Classification (v): Softmax
 - L_{loc} Localisation (\mathbf{x}, θ, r) : Smooth- l_1 loss
 - Total:

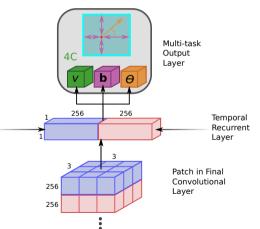
$$L = L_{cls} + \lambda_1 L_{loc}$$

- Training samples:
 - ▶ **Positives:** Anchors with ground-truth IoU overlap > 0.7
 - ▶ Negatives: Anchors with ground-truth IoU overlap < 0.5
 - **Excluded:** Anchors with 0.5 < IoU < 0.7

- 31

ふちょうちょ

Training – Circular Anchor Architecture


- Loss functions:
 - L_{cls} Classification (v): Softmax
 - L_{loc} Localisation (\mathbf{x}, θ, r) : Smooth- I_1 loss
 - Total:

$$L = L_{cls} + \lambda_1 L_{loc}$$

- Training samples:
 - ▶ **Positives:** Anchors with ground-truth IoU overlap > 0.7
 - ▶ Negatives: Anchors with ground-truth IoU overlap < 0.5
 - **Excluded:** Anchors with 0.5 < IoU < 0.7
- Location, orientation and radius gradients only applied for positive anchors

Multi-Task Prediction Architecture 2: 'IoU'

- \bullet Regress top, bottom, left, and right edges of bounding box (b) with IoU loss
- Orientation is regressed separately

▶ ▲ 王

Training – IoU Architecture

- Loss functions:
 - L_{cls} Classification (v): Softmax
 - Localisation (b): IoU (intersection over union)
 - L_{ori} **Orientation** (θ): Cosine loss

$$L_{
m ori} = 1 - \cos\left(\hat{ heta} - heta
ight)$$

Total:

$$L = L_{cls} + \lambda_1 L_{loc} + \lambda_2 L_{ori}$$

イロン 不良 とうせい うせいしゅう

Training – IoU Architecture

- Loss functions:
 - L_{cls} Classification (v): Softmax
 - Localisation (b): IoU (intersection over union)
 - L_{ori} **Orientation** (θ): Cosine loss

$$L_{
m ori} = 1 - \cos\left(\hat{ heta} - heta
ight)$$

Total:

$$L = L_{cls} + \lambda_1 L_{loc} + \lambda_2 L_{ori}$$

- Training samples:
 - ▶ **Positives:** Regions within 0.7× annotated heart radius
 - **Negatives:** Regions outside annotated heart radius
 - **Excluded:** Regions between 0.7 and 1.0 annotated heart radius

- -

Training – IoU Architecture

- Loss functions:
 - L_{cls} Classification (v): Softmax
 - Localisation (b): IoU (intersection over union)
 - L_{ori} **Orientation** (θ): Cosine loss

$$L_{
m ori} = 1 - \cos\left(\hat{ heta} - heta
ight)$$

Total:

$$L = L_{cls} + \lambda_1 L_{loc} + \lambda_2 L_{ori}$$

- Training samples:
 - ▶ **Positives:** Regions within 0.7× annotated heart radius
 - **Negatives:** Regions outside annotated heart radius
 - **Excluded:** Regions between 0.7 and 1.0 annotated heart radius
- Location, orientation and radius gradients only applied for positive regions

K A E K A E K

- Database of 91 videos from 12 healthy subjects
- Multiple views and range of gestational ages (20-35 weeks), orientations, magnifications
- Leave-one-subject-out cross-validation
- Pre-trained VGG-16 or random initialisation

Example Output

Output

Ground Truth

Huang et al. (University of Oxford)

Temporal HeartNet

12th September 2017 12 / 15

人口 医水黄 医水黄 医水黄素 化甘油

Results

Method	Class Error <i>or</i> Outside 0.25 <i>î</i> (%)*	Class Error <i>or</i> IoU < 0.25 (%)	Orient. Error [†]
Circular Anchor	28.8	30.3	0.074
IoU Loss	26.8	28.7	0.084
RNN + Circular Anchor	<u>21.6</u>	<u>27.7</u>	<u>0.072</u>

* Estimated inter-rater variation: 26%, intra-rater variation: 15%

$†$
 Orientation Error $=rac{1}{2}\left(1-\cos\left(heta-\hat{ heta}
ight)
ight)$

э

イロト 不得 トイヨト イヨト

Conclusions

- Deep architecture for predicting basic information in each frame of fetal cardiac screening video
- Three parts:
 - CNN
 - Spatially-localised RNN
 - Multi-task output
- Approaching human-level accuracy on highly ambiguous problem
- IoU architecture gives better localisation than circular anchors
- RNN significantly improves results

4 E K 4 E K

Thank You

- Christos Ioannou, John Radcliffe Hospital, Oxford
- EPSRC 'Seebibyte' Programme Grant (EP/M013774/1)
- EPSRC Doctoral Training Award

Weilin Huang: whuang@robots.ox.ac.uk Chris Bridge: christopher.bridge@eng.ox.ac.uk Alison Noble: alison.noble@eng.ox.ac.uk Andrew Zisserman: az@robots.ox.ac.uk