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Technical Abstract

A research aim within the Medical Imaging Group at Cambridge University Engineer-

ing Department is to develop a methodology for measuring thickness of femoral cortical

bone and comparing the results across large numbers of patients. This has potential im-

plications for the study of hip fracture, since cortical thickness is thought to be a key

determinant of a patient’s susceptibility to fracture.

Once the femoral surface and cortical thickness have been extracted from computed

tomography (CT) data, it is necessary to register the surfaces to some canonical model of

the femur. This allows further comparison of many different patients in a standard space

despite potentially large variations in the shape of their femurs. The current surface

registration process uses a global affine stage followed by a local B-spline stage inside an

iterative closest point (ICP) optimisation framework. This project aimed to evaluate and

improve various aspects of this registration process.

A number of registration failures are observed using the existing process, where key

anatomical features on the two surfaces (in particular the lesser trochanters) are not

brought into correspondence. A technique of extracting distinguished points (specifically

the tips of the greater and lesser trochanters) and incorporating these into the ICP cost

function was found to solve the majority of the registration failures in a dataset of over

600 femurs. In order to locate these distinguished points successfully, it is necessary to

consider the differential geometry of the surface including both first order and second order

information in the form of surface normals and Gaussian and mean curvature estimates.

The drawback of this method is that when the distinguished point detection fails (as it

was found to do on a very small number of unusual surfaces), the resulting registration is

meaningless.

A second problem observed with the existing registration process is unwanted defor-

mation or ‘warping’ of the surface (particularly around the shaft), which is not necessary

to register the surfaces. In order to quantify this, a ‘warping metric’ was developed

based on the transformed position of points that lie in approximately the same plane on

the undeformed surface. The rationale being that these points should remain approxi-

mately coplanar after the transformation, so measuring the distance of points from the

plane before and after registration gives a numerical measure of warping. This metric is

simplistic, but gives some insight into the problem and allows quantitative comparison

between different registration processes.
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In an attempt to find a more localised transformation model to reduce warping, a

locally affine transformation was implemented and tested. This is a non-parametric al-

gorithm that works by finding rigid-body transformations to bring small patches of the

surfaces into alignment. These transformations are then smoothed over the surface to

enforce smoothness of the overall transformation, resulting in a different affine transfor-

mation at each point. The algorithm was found to compare favourably to the B-spline

transformation in terms of the warping undergone by the surfaces during registration.

Alternative point matching schemes were introduced with the dual aims of reducing

registration failures and reducing warping. These alter the simple ‘closest point’ criterion

used in the standard ICP framework. In one such scheme, some weight is given to the sim-

ilarity of the surface normals at the two points as well as the the distance between them in

3D space (the normal-weighted method). This scheme was found to be useful in reducing

registration failures, but in fact introduced additional warping to the registrations. A

second scheme favours points that lie along the normal direction of the canonical surface

(the so-called normal-shooting method). This was found to give have slight advantages in

terms of both registration failures and warping. A third alteration to the original scheme

involves ignoring point matches where one point lies on a rim of the target surface. This

helped solve registration failures in situations where there are regions of the canonical

surface that do not overlap with a region of the target surface.

It was thought that recently developed matching techniques borrowed from the field

of Computer Graphics may be able to model the variation in head-neck angle seen across

femurs, as this is similar to the articulated motion that such algorithms were developed

for. One such scheme that was found and tested involved conformal flattening of the

surfaces to the complex plane, followed by an isometric Möbius transformation within the

complex plane to register the two flattened representations. Initial tests suggested that

the scheme is computationally very expensive and does not reduce warping as desired.

Synthetic surfaces with known ground truth correspondences were used as a further

tool for evaluating and investigating registration processes. These tests revealed that

none of the methods discussed were able to come close the the ‘best’ transformation

when the correspondences were known, but that using normal-weighted point matching

generally came closer than the standard closest point matching. It also showed that

ICP methods are very susceptible to problems with local minima, sometimes even in

the global alignment stage, and that consequently the performance of the optimisation

depends heavily on initialisation.

The most important contributions of this project are the successful distinguished point

scheme for reducing registration failures and the use of the locally affine transformation

to reduce warping. The other findings of the report may be useful to those developing

registration algorithms for femurs or similar bone surfaces.
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1 Introduction

1.1 Motivation

Hip fracture, defined as fracture of the proximal femur, is a common and serious medical

condition leading to severe debilitation and a 33% mortality rate at one year [1]. Care for

hip fracture sufferers costs the United Kingdom an estimated £2 billion a year [2], and as

such it is an important medical concern especially within an ageing population.

The anatomy of the proximal femur is outlined in Figure 1a, and is sufficiently detailed

for the purposes of this report.

Research has suggested that the thickness of the cortical layer of bone (the outer,

dense layer) is a key determinant in a person’s susceptibility to hip fracture [3]. Current

work is aiming to conduct cohort studies to compare features of the cortical thickness

distributions across large numbers of patients and controls. This will potentially assist

future studies into the condition and its causes, allow clinicians to identify those patients

particularly at risk [4], and help in the development of preventative medicines by providing

a method for evaluating treatment [5].

A research project within the Medical Imaging Group at Cambridge University Engi-

neering Department has already demonstrated a technique for estimating cortical thick-

ness from computed tomography (CT) data [6]. This allows a cortical thickness map over

the surface of a femur (such as that in Figure 1b) to be extracted from an in vivo scan.

However, before any meaningful comparisons can be drawn between cortical thickness

maps obtained from different patients, it is necessary to register the surfaces to some

standard (or canonical) shape. After a successful registration, an individual’s cortical

thickness values can be mapped onto the canonical model, and all further statistical

comparison between sets of thickness maps can take place on this canonical surface. The

goals of designing a registration process are therefore to obtain anatomically meaningful

correspondences, and to be highly automated to allow large cohort studies to be carried

(a) (b)

Figure 1: (a) Anatomy of the human femur (proximal end). (b) A cortical thickness map
for a 3D femur surface.
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out in an efficient and repeatable manner. This project is concerned with improving the

existing surface registration methodology towards these goals.

1.2 Surface Registration

In this report, we consider a surface to be composed of a set of vertices in 3D space, and

a set of triangles connecting them. Surface SA, the canonical femur, consists of the set of

vertices {pi} and surface normals {ni}, and surface SB, the individual (‘target’) femur in

question, consists of the set of vertices {qi} and surface normals {ri}. Surface registration

between two surfaces SA and SB is then the estimation of a mapping between coordinate

systems RefA and RefB such that anatomically corresponding points are brought into

correspondence (as defined by Audette et al. [7]). Usually the process involves finding a

transformation applied to surface SA such that it is optimally aligned with surface SB by

some measure. At the end of our registration process, we wish to have, for each vertex of

surface SA, a corresponding point on surface SB via the transformation such that we can

map across cortical thickness data.

There are three key decisions to be made when designing a registration process:

1. Transformation – The form and parametrisation of the transformation must be

chosen. This implicitly defines the degrees of freedom of the transformation and has

implications for the sort of variation that can be modelled.

2. Similarity Criterion – Some measure of similarity must be used to determine

the ‘best’ transformation. In iterative optimisation schemes, this is defined by the

choice of cost function.

3. Optimisation Strategy – In some cases, there may be a closed-form solution, but

usually some form of optimisation scheme will be necessary.

There is a large body of literature describing methods to perform surface registration,

and a diverse range of approaches have been taken by the researchers, especially for non-

rigid registration as required here (Audette et al. give a thorough overview [7]). The task

in our particular case is complicated by the fact that the surfaces to be registered come

from different patients, whose femurs can vary widely in shape. It is therefore often not

obvious which points should be placed in correspondence.

1.3 Existing Registration Process

The wxRegSurf software currently used by the group for registration makes use of an

iterative registration framework called the iterative closest point (ICP) method, as intro-

duced by Besl and McKay [8], and Chen and Medioni [9]. This involves two steps that

are repeated until convergence or termination:
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1. Matching Stage – For each point on surface SA find the closest point on surface

SB. Alternatively point pairs can be found based on some other criterion.

2. Transforming Stage – Find the transformation such that the sum of the dis-

tances between matched points is minimised. In the existing implementation this is

done using the Levenberg-Marquardt algorithm, a standard non-linear least-squares

optimisation routine, to find the optimal parameters.

The full registration process takes place in three stages, as shown in Figure 2:

Figure 2: The three stages of the existing registration process.

1. Rigid-body rough alignment, based on aligning the estimated natural axes of

the surfaces: one aligned with the shaft (the proximal-distal direction), one with

the neck (the lateral direction), and a third perpendicular to these (the posterior-

anterior direction). This is a closed-form process.

2. Global affine transformation, where the 12 transformation coefficients are found

using the ICP method.

3. Local B-spline deformation, based on interpolation from a grid of deformable

control points, as used by Rueckert et al [10]. The control point positions are

determined using the ICP method.

Use of the ICP framework means that there are two choices that govern the effective

similarity criterion: the method for choosing closest points, and the cost function for

the optimisation of the transformation. The effective similarity criterion of the above

methodology is the total distance between closest points on the surfaces.
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1.4 Report Outline

This report details investigations into various improvements to the current registration

process:

� Sometimes the existing method fails to bring anatomically corresponding points

(such as the trochanters) into alignment. In Section 2, a method for the extraction

and use of distinguished points is given. This represents a change to the similarity

criterion by changing the cost function of the optimisation process.

� The conclusions drawn from comparisons of thickness maps are only useful if the

registration method does not unrealistically distort the mesh. In Section 3, a simple

metric is developed to quantify the distortion undergone by a mesh.

� In Section 4, alternative transformations to minimise distortion of the mesh are

introduced.

� As an alternative solution, Section 5 describes ways to alter the similarity criterion

by using different ways to select ‘closest’ points within the ICP framework.

� The results of the experiments conducted are presented in Section 6.

� The discussion of the results is presented in Section 7, and the conclusions are

presented in Section 8.

This report does not consider changes to the optimisation strategy itself.

1.5 Implementation Details

The wxRegSurf software is written in C++ using the cross-platform GUI library wxWid-

gets. Unless otherwise stated, all experiments were conducted by editing and adding to

the existing C++ code.
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1.6 Notation and Abbreviations

The following mathematical notation will be used throughout this report:

i, j ∈ N0 A variable denoting the index of a vertex in a list

k ∈ N0 A variable denoting the index of a triangle in a list

SA Surface A, representing the canonical femur

SB Surface B, representing the target femur

t ∈ N0 Time index in an iterative process (written in superscript)

pi ∈ R3 The position vector of the vertex i on SA
qi ∈ R3 The position vector of the vertex i on SB
psrc ∈ R3 The position vector of the shaft rim centre of SA
pcm ∈ R3 The position vector of the estimated centre of mass of SA
ni ∈ R3 The unit, outward-facing surface normal vector at vertex i on

SA
ri ∈ R3 The unit, outward-facing surface normal vector at vertex i on

SB
mk ∈ R3 The unit, outward-facing surface normal vector at triangle k

ês, ên, êo ∈ R3 Orthogonal unit vectors of the natural axes system in the shaft,

neck and other directions respectively

Ki ∈ R Estimated Gaussian curvature at vertex i

Hi ∈ R Estimated mean curvature at vertex i

T (·) : R3 → R3 A general description of a transformation applied to vertices

NT (·) : R3 → R3 The transformation applied to a surface’s normals when T is

applied to its vertices

The following abbreviations are used:

3D 3-dimensional

DoF Degree(s) of freedom

FFD Free-form deformation

ICP Iterative Closest Point, a registration framework

LAD Locally Affine Deformation
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2 Distinguished Point Detection

In this section, the problem of registration failures in the existing registration process

is considered, and ways to reduce their occurrence are explored. A distinguished point

detection algorithm for this purpose is presented.

2.1 Registration Failures

One limitation of the current software is the nature of the standard ICP cost function,

which simply minimises the total distance between closest points on the two surfaces. If

the initial alignment is sensible and the two surfaces are not too dissimilar in shape, the

current technique works well and anatomically corresponding points end up being aligned

in the final registration. However the process does not directly ensure that this is the

case as it takes no explicit account of the shape of the surfaces. This is illustrated by

the extreme example shown in Figure 3, in which it can be seen that, although the two

surfaces are closely aligned, the registration process has completely failed to align the two

lesser trochanters. Such registration failures must be manually identified and corrected,

a time-consuming, subjective, and non-repeatable process.

Two types of registration failures have been observed. The first is when the alignment

is completely wrong and the registration process has failed to align the anatomical features

properly. We will refer to such failures as complete failures. These can be identified from

visualisation with little room for ambiguity. The second, more common type of failure is

when most features of the surfaces are aligned, but the lesser trochanters are incorrectly

aligned as in Figure 3. We will refer to such failures (where the lesser trochanters overlap

by less then 2/3 their height or width) as lesser trochanter failures.

Figure 3: Example of a registration failure. Left the red canonical femur and the green
individual femur after the initial alignment, and right the registered femurs, showing the
failure to align the lesser trochanters.
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2.2 Previous Work

Many researchers have considered the use of the differential geometry of a surface as a

way of quantitatively describing its local shape. The first derivative of a surface at a point

may be described by the (outward-facing) surface normal vector at that point. Whilst

this is useful, a richer description can be obtained by also considering the second-order

information, characterised by surface curvatures. Besl and Jain [11] and Brady et al. [12]

provide detailed overviews of the use of surface curvatures.

Consider a point p on a smooth surface in R3, with an outward facing surface normal

n, as shown in Figure 4. For each direction within the surface at p, one can define a plane

A that intersects the surface in that direction, and also contains the surface normal n. The

intersection of this plane with the surface forms a plane curve, C. The surface curvature

at p in this direction is defined as the curvature of this plane curve at p. Curvature in the

other directions may be obtained by rotating the plane A around n. For a smooth surface

there will be two directions of extreme curvature termed the principal directions, which

are perpendicular. The curvature values in these directions (the maximum and minimum

curvatures) are the principal curvatures, κ1 and κ2.

Figure 4: Definition of surface curvature.

Two further commonly used quantities are the Gaussian curvature (K) and mean

curvature (H), defined as the product and mean of the principal curvatures as follows:

K = κ1κ2

H =
κ1 + κ2

2

The sign combination of the Gaussian and mean curvatures categorises the local shape as

flat, ridge, valley, peak, pit etc. [11].

The general approach to preventing registration failures involves the extraction of some

sort of feature from the surfaces, usually using differential geometry, and the incorporation

of these features into the similarity criterion to guide the registration process. Approaches

broadly belong to three categories: extraction of point, line, and region features.
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Region features are entire areas of a surface with similar characteristics (for example

the sign combination of mean and Gaussian curvatures) or separated by some meaningful

boundary. One can imagine, for example, identifying which vertices belong to the head,

neck, shaft, and greater and lesser trochanters and using this information to help register

the surfaces. Many techniques have arisen in the field of Computer Graphics for segment-

ing meshes into meaningful regions. However, many are designed to find fairly uniform

patches separated by sharp edges or “watersheds” [13], and as such would not be suitable

for the subtly curving shape of a femur. Other schemes do not have such limitations

(such as those in Besl and Jain [14] and Yamauchi et al. [15]), but it is unclear whether

they would produce useful results from a smooth surface such as a femur. Furthermore,

region growing algorithms are involved and computationally expensive, and classification

of every point is somewhat excessive for our purposes here.

Line features, such as crest lines (having various definitions related to principal cur-

vatures [7, 16]), are useful for certain types of surface where there are many obvious crest

lines such as the brain [17], but are of limited use for femurs, where the exact location of

the lines would likely be determined largely by uninteresting small-scale features or noise

in the mesh.

Point features are more suited to reducing registration failures in femurs. They gen-

erally involve simpler detection algorithms, and, once detected, may be straightforwardly

incorporated into the existing ICP registration framework. Criteria for the selection of

points generally involve extrema of geometric properties (such as principal curvatures [18]

or Gaussian curvatures [19]). Once detected, descriptors of the point may be constructed

(using, for example, histograms of neighbouring vertex properties [20] or the shape of

the surface at a fixed radius from the point [21]), and these may then be used to find

correspondences between the detected points.

2.3 Distinguished Point Detection Algorithm

The algorithm presented here uses information about the position, normal and curvature

of the surface’s vertices to locate two very specific distinguished points: the tips of the

greater and lesser trochanters. This has advantages over a general point detection scheme

as it allows us to use our specific knowledge about the shape of femurs and the important

features to match. It also avoids the need for a matching stage, which would add compli-

cation and may give spurious results. However it does mean that the algorithm is highly

specialised to femurs and could not be applied to other surfaces.

The existing software already estimates the centre of mass, pcm, (average position of

all vertices) and the natural axes of the two femurs (represented by the unit vectors ês, ên

and êo respectively in the shaft, neck and other directions) for the purposes of performing

the initial alignment (see Figure 5). This coordinate system, with the centre of mass as

8



the origin, gives a convenient representation to use when searching for the distinguished

points. Additionally, the location of the shaft rim centre, psrc, (the centre of the rim that

represents the edge of the mesh around the shaft) is calculated by the existing software

and used by the algorithm.

Figure 5: The natural axis coordinate system.

2.3.1 Estimating Surface Curvatures

Methods for estimating Gaussian and mean curvature values at points on an irregular mesh

were adapted from Csákány and Wallace [22]. Methods for calculating more sophisticated

estimates (as well as further differential properties such as principal directions) may be

found in Taubin [23] and Meyer et al. [24]. However Csákány and Wallace’s scheme is

simple to implement and sufficient for our purposes. The Gaussian curvature Ki at a

vertex i is calculated from the angle deficit of those triangles incident upon vertex i (i.e.

those triangles that have vertex i as one of their vertices). The mean curvature Hi is

found by considering the normals of the same triangles. Note that the following notation

relates to SA, but in practice the process is also performed on SB in an identical way.

We shall denote the set of triangular faces incident upon vertex i as Fi, the side lengths

of these triangles k as ak, bk and ck (where ck is the side opposite vertex i), their outward-

facing unit normals as mk, and their areas as Ak. The points that share triangles with

i are denoted pi(k) as defined in Figure 6. The triangles are ordered cyclically around i

such that triangle (k + 1) is always the next triangle located anticlockwise from triangle

k around vertex i when the surface is viewed from the outside, and it is the side of length

bk that is shared by the triangles k and (k + 1).

9



Figure 6: Definitions for the curvature calculations for five incident triangles.

The angle deficit ∆i at vertex i is then:

∆i = 2π −
∑
k∈Fi

φk

where φk is the interior angle of triangle k where it meets vertex i, calculated using

φk = arccos

(
a2k + b2k − c2k

2akbk

)

Using this, the Gaussian curvature, Ki, and the mean curvature, Hi, are given by

Ki =
2∆i∑

k∈Fi

Ak

Hi =

∑
k∈Fi

(
zkbk arccos(mk ·mk+1)

)
2
∑
k∈Fi

Ak

where zk ∈ {−1, 1} determines whether the surface bends in a concave or convex manner

between triangles k and (k + 1) as follows (sgn(·) is the signum function):

zk = sgn
(

(mk ×mk+1) · (pi(k) − pi)
)

The values of the mean and Gaussian curvature can be seen in Figure 7a. There is

substantial noise reducing the usefulness of these estimates due to measurement error and

the upstream segmentation method. Therefore a median filter is applied to the curvature

values to eliminate outliers, followed by several passes of a mean filter to leave only the

large-scale features: see Figure 7b. It is evident that the tips of the greater and lesser

trochanters are among the regions of high Gaussian and mean curvature.

10



(a) Unfiltered: Gaussian curvature (left), and mean curvature (right).

(b) Filtered: Gaussian curvature (left), and mean curvature (right).

Figure 7: Visualisation of estimated surface curvatures.

2.3.2 Choosing Distinguished Points

Equipped with the estimated curvature values, the distinguished points algorithm starts

by deciding whether the surface represents a left or right femur by summing the positive

Gaussian curvature values at vertices on either ‘side’ of the femur (with respect to the

other axis) below the centre of mass. The side with the larger sum is labelled as the side

which contains the lesser trochanter (the posterior side).

The lesser trochanter vertex is then chosen to be the vertex i that satisfies all the

following criteria. The point must:

1. Be on the posterior side of the centre of mass (with respect to the other axis)

((pi − pcm) · êo > 0), below the centre of mass with respect to the shaft axis

((pi − pcm) · ês < 0) and forward of the shaft rim centre with respect to the neck

axis ((pi − psrc) · ên > 0).

In cases where the surface contains a long section of the femoral shaft, the centre

of mass is not a suitable threshold in the shaft direction. Therefore, in cases where

the distance from ‘highest’ point on the surface (in the shaft direction), ph, to the

centre of mass is greater than the furthest distance of any point from the centre of

mass in neck -other plane (call this dn), an alternative criterion is used:

‖(pi − ph) · ês‖ > dn

11



2. Have a unit normal whose dot product with the unit shaft axis vector has an absolute

value of less than 0.2 (‖ni · ês‖ < 0.2).

3. Have a positive value of Gaussian curvature (Ki > 0).

4. Have a greater value of the following function than any other vertex satisfying the

other criteria:

Ci,LT = ‖(pi − psrc)− ((pi − psrc) · ês)ês‖2 + λK,LTKi − λH,LTHi

The first term in this measures the distance of the point from the shaft rim centre in

the neck -other plane. Added to this are the Gaussian and mean curvatures weighted

by the non-negative weighting factors λK,LT and λH,LT .

The greater trochanter vertex is chosen to be the vertex i that satisfies the following

criteria. The point must:

1. Be located ‘behind’ the centre of mass with respect to the neck axis

((pi − pcm) · ên < 0), ‘above’ the centre of mass with respect to the shaft axis

((pi − pcm) · ês > 0) and on the posterior side of the centre of mass with respect

to the other axis ((pi − pcm) · êo > 0).

2. Have a surface normal whose dot product with the increasing neck axis is greater

than zero (ni · ên > 0).

3. Have a greater value of the following function than any other function satisfying the

other criteria:

Ci,GT = (pi − pcm) · d̂ + λn(ni · d̂) + λK,GTKi − λH,GTHi

where λK,GT , λH,GT and λn are non-negative weighting factors assigning variable

weight to the Gaussian curvature, mean curvature and normal direction respectively.

The unit vector d̂ is the ‘desired direction’ for the position and normal direction of

the greater trochanter, given by:

d̂ =
ês + ên + êo
‖ês + ên + êo‖

An example of the distinguished points selected by this scheme is shown in Figure 8.

The scheme has a tendency to pick a lesser trochanter point away from the centre of the

trochanter and towards the edges. This is because there is in general higher curvature

towards the edges of the trochanter, and this scheme gives weight to the curvature value.

To correct for this, once a point on the lesser trochanter has been located (as above), the

average 3D position of a suitable set of neighbourhood vertices is calculated and replaces

12



Figure 8: Example of selected points.

the distinguished point. The neighbourhood vertices are those vertices that lie within a

distance threshold (15 mm) of the chosen vertex and have Gaussian curvature above a

threshold (0.001 mm−2).

The weights λK,LT , λH,LT , λK,GT , λH,GT , and λn must be carefully chosen, as the

performance of the algorithm is very sensitive to their values. The set of values shown in

Table 1 was found to give good results and is used for all further experiments.

Parameter Value
λK,LT 10000
λH,LT 1000
λK,GT 0
λH,GT 20
λn 10

Table 1: Values of weighting factors used in the distinguished point detection scheme.

Once these points have been selected, it is necessary to incorporate them into the

existing ICP cost function. This is achieved by making sure that corresponding distin-

guished points on the two surfaces are always paired with each other (instead of using

the true closest point), and then giving increased weight, λDP , to distance between these

pairs when evaluating the cost function. Weights in the range 40 ≤ λDP ≤ 100 were

found to give reasonably good results. If the weight is lower than this, the distinguished

points do not have much influence on the process and behaviour is similar to that when

the standard ICP cost function is used. Above this range, the process tends to overfit to

the exact location of the distinguished points at the expense of the alignments of other

points on the surface.
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3 Evaluating Registration Quality

Another shortcoming of the existing registration process is that in some situations it causes

distortion of the mesh that seems intuitively unnecessary to produce a good registration.

This can be seen clearly in Figure 9.

Figure 9: Example of a registration with unneeded deformation: the canonical femur
before registration (left), the registered canonical femur, showing warping of the shaft
(centre), and the target femur (right).

The two surfaces in this figure are aligned very well in terms of registration error

(distance between closest points), and in terms of the alignment of the salient anatomical

features. However, the non-uniform deformation of the shaft in the ‘vertical’ (proximal-

distal) direction (easily seen by looking at the shaft rim in the figure) is intuitively not

necessary to align the two surfaces. Because there is little curvature of the shaft in this

direction, the transformation could deform the shaft significantly in this direction with

only small changes in registration error and alignment of distinguished points. However,

we wish for our registration process to give us a solution without such distortion.

There are a number of possible factors contributing to the failure of the existing

process:

� Overfitting to the target surface.

� The fact that the B-spline technique is not sufficiently localised.

� The inability of the current technique to model gross shape changes, such as the

angle of the neck.

� The method used to select the closest points in the matching stage.

The causes of warping and ways to reduce it are discussed further in Sections 4 and 5.

The remainder of this section will be concerned with developing a technique for quantifying

this unwanted distortion, with a view to then evaluating methods to reduce it. In §3.2 a

method based on the coplanarity of points on contours of the surface is presented.
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3.1 Previous Work

There is remarkably little existing literature concerned with quantifying the distortion

undergone by meshes during transformations or with evaluating registration processes

based on this idea. Some refer to methods for specific transformations using functions of

the transformation parameters. For example, Szeliski and Lavallée [25] use functions of the

positions of spline control points as a measure of distortion to regularise their optimisation

algorithm. The same authors also suggest a general form using the difference of parameter

vectors. If the parameters of a transformation may be placed into a vector v, and the

parameters of the identity of the transformation are v0, then a measure of distortion is:

D(v) = ‖v − v0‖2

However, this would not provide meaningful comparisons between different transforma-

tions parametrised in different ways. We also wish to try and avoid penalising ‘useful’

deformation needed to correctly register the two surfaces.

To the best of our knowledge no such metric has been previously described.

3.2 Mesh Distortion Metric

Here we present an original mesh distortion metric, based on measuring how close sets of

points are to being coplanar. The rationale behind this is that the transformation should

distort the surface such that points on a planar contour around the surface should also

lie roughly in a plane after the transformation. This is particularly important around the

shaft as in most cases this deformation is unnecessary, such as observed in the example

in Figure 9.

Given a description of a plane, the first step is to find a closed contour of points

around the surface lying close to where this plane intersects the surface. This is done by

finding an initial seed point that lies closest to the plane, and then moving around the

surface clockwise (when viewed along the direction of the normal of the plane), at each

step finding the closest point to the plane that lies clockwise from the current point. This

is shown in Algorithm 1. Additionally, there are mechanisms to cope with contours that

cross a rim in the surface, but these have been omitted from Algorithm 1 for clarity.

After the contours have been found on the undistorted surface, the average distance

of the points on the contour from the plane is found. Then the Levenberg-Marquardt

algorithm is used to fit a new plane to the same points on the transformed surface, and

the average distance of the transformed points from this plane can be found in the same

way. The comparison of these values gives a measure of the distortion of the mesh.

A grid of nine such contours is defined on the canonical surface, with three perpendic-

ular to each of the natural axes, see Figure 10. This can be used to give a measure of the
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Input: i0 ∈ N0 a seed vertex, a ∈ R3 the plane normal, b ∈ R the plane offset
Output: a list of vertices on the contour

i← i0 initialise at the seed point
repeat

d← a× ni define the search direction
for all vertices ii in the neighbourhood of i do

if ((pii − pi) · d > 0) consider only vertices in this direction then
ε← |(pii · a)− b| distance of point ii from plane
if (ε < εmin) then
εmin ← ε
j ← ii make this the next point

end if
end if

end for
i← j advance to next point

until i = i0 we return to the seed point

Algorithm 1: Algorithm for finding a contour.

Figure 10: Contours on the canonical surface: before registration (left) and after regis-
tration (right).

overall warping of the mesh, or the contours can be examined individually (in particular

the contour located on the lower shaft). This method is used to evaluate a number of

methods introduced in Sections 4 and 5.

3.3 Synthetic Data and Ground Truth Error

The distortion undergone by a mesh during registration is just one aspect of the quality

of a registration process. Another important consideration is the extent to which the

matched points correspond anatomically. In general, this is also very difficult to measure

meaningfully. However in the case where the ground truth correspondence between the

two surfaces is known, it can be evaluated straightforwardly. This makes it possible to

use synthetic data to evaluate registration processes.

A dataset consisting of 100 synthetic surfaces and a ‘canonical’ synthetic surface was
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used to evaluate the registration processes. These surfaces have a very simple shape,

mimicking the shaft, neck, and head of a femur. Each of the surfaces has a different

shaft-neck angle and a different head length (as these are two of the most important

variations between femurs, see §4), but they are otherwise similar. There is a known

one-to-one correspondence between points each of the surfaces. Two such surfaces are

shown in Figure 11.

Figure 11: Example surfaces from the synthetic dataset.

The ground truth error between two registered synthetic surfaces can be found by find-

ing the average distance between the true correspondence pairs after registration (rather

than the distance between closest points). This gives another criterion against which to

assess the performance of different registration techniques. Unfortunately however, due

to the simplified nature of the surfaces, it is not appropriate to use the distinguished point

method with the synthetic dataset.
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4 Alternative Transformations

In this section, we consider changes to the existing transformations in order to address

the issue of unwanted warping as introduced in §3.

Although affine and B-spline transformations have been shown to work well with the

sorts of deformations or variations found in breast and brain tissue [10, 26], they are not

designed to cope with the large variations that are seen amongst femurs. In particular,

the angle made between the head and the neck of the femur varies significantly between

individuals, as does the length of the neck (see Figure 12 for an example). In this situation,

the ‘ideal’ transformation would change the angle of the neck in an ‘almost rigid’ fashion

and stretch it along its axis whilst affecting the rest of the femur (shaft etc.) as little

as possible. B-spline deformations, especially those with few control points, are not well

suited to carrying out such ‘almost rigid’ deformations of parts of surfaces because they

warp the space in which the surface is embedded.

Figure 12: Two femurs with very dissimilar neck lengths and head-neck angles.

The B-spline stage used in the existing process uses a 4× 4× 4 grid of control points,

which is not sufficiently localised to prevent, for example, the registration of the head

and neck interfering with that of the shaft. In fact, in a volumetric B-spline deformation,

the transformed position of a point is affected by the positions of the surrounding 64

control points. Therefore, in our grid, the warped position of each vertex on the surface

is affected to some extent by the positions of all the control points. Consequently, when

control points move to make large scale changes (such as aligning the head and neck),

other areas of the surface (such as the shaft) will also be affected, particularly if the cost

function is fairly indifferent to this movement.

This could be easily improved by increasing the number of control points in the grid.

However, adding one more plane of control points in each dimension to give a 5 × 5 × 5

grid would lead to an optimisation problem with 375 degrees of freedom for each ICP

iteration. It is likely that several more control points would be needed to get the desired

degree of localisation. The computations quickly become impractical, especially when the

process is required to carry out cohort studies on a large number of femurs. Such an

optimisation problem is also likely to encounter serious problems with local minima.
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The remainder of this section introduces constraints to the B-spline transformation in

an attempt to reduce the warping, and discusses other types of transformation that may

be able to reduce this problem.

4.1 Previous Work

One way to prevent warping is to simply constrain or regularise the deformation stage.

Simple regularisation schemes for B-splines are offered by Rueckert et al. [10, 26]. How-

ever, these also reduce the ability of the transformations to correctly register the surfaces.

A method to constrain the current transformations is discussed in §4.2.

Many authors have considered various polynomial or spline-based transformations,

such as Szeliski and Lavallée’s Octree splines [25], Bookstein’s thin-plate splines [27] or

simple low-order polynomial transformations [7, 17]. However such approaches are likely

to come up against similar shortcomings to the existing B-spline process.

Xie and Farin present a hierarchical B-spline scheme that allows for more localised

deformation where it is needed without incurring the high computational cost of using

a very high number of control points [28]. This works by starting with a 4 × 4 × 4 grid

exactly as in the current scheme, then subdivides this to form new B-spline grids with

smaller spacings to match areas where the registration error is still high. However, since

it is often the initial large deformations which are contributing to the warping in the

existing process, it is unlikely that this approach would produce significant improvements

for our purposes.

A more promising approach is found in the locally affine method of Feldmar and

Ayache [29]. This method abandons the standard free-form deformation approach of

warping the space in which a surface is embedded, and instead finds deformations to apply

to each vertex of the surface on an individual basis. This involves an optimisation over

the 6 DoF space of rigid-body transformations for every vertex on the canonical surface,

but this is far faster than conducting a single optimisation in a very high dimensional

space (as would be required by a B-spline with many control points). Smoothness of

the transformation is maintained by averaging the deformation over local patches of the

surface. The key advantage of the algorithm is that the degree to which the deformation

is localised is controlled by the extent of this smoothing. The locally affine method was

implemented and tested as described in §4.3.

4.2 Constrained (‘Physical’) Transformations

An existing initial attempt to reduce the problem of mesh distortion, which is evaluated

in this project, was based on constraining the existing global affine/local B-spline trans-

formation. By simply reducing the number of degrees of freedom a transformation has,

the amount of distortion that it can create in a mesh is reduced. However, this must
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be balanced against the ability of the transformation to register the two surfaces. The

resulting transformation is referred to as the ‘physical’ transformation, and consists of

two parts: a global linear transformation followed by a constrained B-spline deformation

stage.

4.2.1 Global ‘Physical’ Transformation

The existing process uses a 12 DoF affine transformation as the global stage of the regis-

tration. These 12 degrees of freedom can be interpreted as three translational components,

three rotational components, three scaling components and three shearing components.

The transformation can be represented by a general (3 × 3) matrix A and a translation

vector b:

T (p) = Ap + b

Although planar points remain planar under an affine transformation, the shearing com-

ponents can still introduce unwanted deformation into the mesh. The ‘physical’ transfor-

mation constrains the affine transformation by eliminating the three shearing components,

giving a 6 DoF linear transformation plus a translation (and therefore a total of 9 DoF).

Equivalently, this transformation can be interpreted as a generalisation of a rigid-body

transformation to include three anisotropic scaling components. This can be represented

by a (3× 3) matrix M and a translation vector b applied to a point p:

T (p) = Mp + b

where M is constrained to have a specific form, determined by the three Euler angles, α,

β, γ and the three scaling factors σ1, σ2 and σ3, which together with the translational

components are the nine parameters of the transformation. Taking sα and cα to be

shorthand for sin(α) and cos(α) respectively, the form of M is given by:

M =

 cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ


 σ1 0 0

0 σ2 0

0 0 σ3


4.2.2 ‘Physical’ B-spline Transformation

The existing local B-spline transformation uses a 4 × 4 × 4 grid of control points, with

each control point having 3 DoF representing its position in 3D space. To constrain this

deformation and prevent it from causing warping of the shaft, the lower two of the four

horizontal planes of the control point grid (which have a large influence on the position

of vertices on the shaft) are constrained to remain planar (but the planes themselves

may move relative to each other, whilst maintaining the same orientation) as shown in

Figure 13. This reduces the total number of degrees of freedom from 192 to 162 and
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reduces the ability of the transformation to warp the shaft, whilst leaving much of the

flexibility around the head and neck needed to register the surfaces.

Figure 13: In the ‘physical’ B-spline deformation, the control points in the lower two
planes are constrained to stay within their planes (though the planes themselves may
move with a single degree of freedom).

4.3 Locally Affine Deformation

The locally affine method introduced by Feldmar and Ayache [29] is non-parametric in

that the transformation cannot be represented by any single global set of parameters.

Instead the position of every point on the surface is independent and is stored separately.

The algorithm works by considering small areas of the surface at a time. It first finds

the rigid body (6 DoF) transformation that maps each vertex along with a small set of

surrounding vertices to their closest points on the other surface. Then these rigid-body

transformations are smoothed over the surface to ensure that the overall transformation

is smooth. This gives a set of (generally different) affine transformations at each vertex

on the surface, which gives rise to the name locally affine. Each vertex is then deformed

by its own affine transformation, and the process repeats in an iterative manner using the

ICP framework.

There is one free parameter of the process, R, which controls the radius of the group

of points considered when finding the rigid-body transformations. The larger the value

of R, the smoother the final surface will be and the less able the deformation will be to

match the two surfaces. However, if R is too small there is little smoothness constraint

and deformations will overfit one surface to the other.

In detail, the algorithm consists of the following stages:

1. For each vertex i on surface SA, find the set of points on surface SA that lie within

a distance R of i (including the vertex i itself). This is the sphere set of i, denoted
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Vi. To speed up the algorithm, it is assumed that this set will not change during

the deformation process, which is reasonable because the smoothing ensures that

vertices will not move significantly relative to their neighbours.

2. For each vertex i on surface SA, find the closest point on the surface SB as in the

usual ICP method (or one of the matching methods discussed in §5).

3. For each vertex i, find the rigid body transformation (described by the rotation

matrix R
(t)
i and the translation vector t

(t)
i ) that, if applied to the whole surface,

would minimise the distance (in the least squares sense) between the vertices in Vi
and their matched vertices on surface SB. Here, t represents the time index within

the iterative process. The optimisation is performed using the Levenberg-Marquardt

algorithm to find the six parameters of the rigid-body transformation.

4. Smooth the rigid body transformations {R(t)
i , t

(t)
i } to give the locally affine transfor-

mations at each point {A(t)
i ,b

(t)
i }, where A

(t)
i is a general (3×3) matrix and b

(t)
i is a

translation vector. This is done using a weighted average over the transformations

at all the vertices in a vertex’s sphere set as follows:

A
(t)
i =

∑
j∈Vi

λ
(t)
j R

(t)
j

b
(t)
i =

∑
j∈Vi

λ
(t)
j t

(t)
j

where the weighting factor, λj accounts for the distance of vertex j from i,

λ
(t)
j =

(
1− ‖p

(t)
j −p

(t)
i ‖

C

)
∑
k∈Vi

(
1− ‖p

(t)
k −p

(t)
i ‖

C

)
C is a constant describing the characteristic scale of the surface, taken here to be

the maximum distance between the estimated centre of mass and the surface.

5. Apply the locally affine transformations to the points, so that at the start of the

next iteration (t+ 1):

p
(t+1)
i = A

(t)
i p

(t)
i + b

(t)
i

6. Return to step 2, or terminate.

Since this method gives an inherently localised transformation, it is used after an initial

global transformation (such as an affine transformation or the ‘physical’ transformation

of §4.2) and replaces the local B-spline stage of the original registration process.

22



5 Alternative Methods for Finding Matched Points

An alternative way to alter the similarity criterion of an ICP-based process is to change

criterion that is used to find point pairs during the matching stage. In standard ICP,

matched points are simply chosen to be the closest point on the other surface in 3D

space. When using other methods, the matched points will not generally be the closest

points in 3D Euclidean space. Therefore from now on, we will refer to finding matching

points rather than closest points to avoid ambiguity. The point matches are treated

exactly the same during the transforming stage regardless of how they are found during

the matching stage.

The definition of the problem is, given a transformed vertex i with position T (pi)

on the canonical surface, SA, find a matching vertex i∗ with position qi∗ on the target

surface, SB.

There are two reasons for exploring these alternative methods. Firstly, they provide an

alternative to the use of distinguished points for ensuring that anatomically corresponding

points are brought into correspondence, but they have the potential advantage of ensuring

similarity between all points on the surfaces.

Secondly, using these methods may help prevent unnecessary mesh distortion caused

by the standard closest point method (see §3).

The current method for selecting closest points uses a spatial hashing of points to make

the process of searching the points far quicker. In this section, three different schemes

are described to improve the point matching whilst still using the spatial hashing to give

efficient computation.

5.1 Previous Work

Authors have used a variety of methods to match points, usually based on matching dif-

ferential geometric properties of points as well as their physical proximity. Feldmar and

Ayache [29] match by finding the closest point in an 8-dimensional space composed of

the 3 components of the vertex’s position, the 3 components of its normal, and its two

principal curvature values (although one could also imagine using Gaussian and mean

curvature to similar effect). This means that matched points have similar normal and

curvature properties as well as positions, with clear advantages for ensuring that matches

are anatomically meaningful. However, searching efficiently in an 8-dimensional space is

a difficult problem. Münch et al. [30] simplify this by finding the point that minimises a

weighted combination of the Euclidean distance between two points and a term quanti-

fying the difference of their surface normals. We will refer to this as the normal-weighted

method.

Rusinkiewicz and Levoy [31] review a number matching techniques, but some are

only suitable for range images and not surfaces. These are mostly variants on projecting
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Figure 14: Illustration of the advantages of using alternative matching schemes.

points from one surface to the other along the normal of one surface, a technique used by

a number of other authors such as Chen and Medioni [9]. We will refer to this method as

normal-shooting.

The potential advantages of using these techniques are illustrated in Figure 14. In

Figure 14A, the existing closest point process would choose the point pair labelled 1,

which could lead to unnecessary warping of SA to the left or right. However using either

the normal-weighted or normal-shooting method would lead to the pair labelled 2, a more

intuitive match that would prevent such warping.

In Figure 14B, using closest points would lead to the point pair labelled 1. This could

lead to a situation such as that in Figure 3 where the process fails to bring anatomically

corresponding points together. Using a normal-weighted matching scheme would lead to

the point pair labelled 2 and overcome this problem. The normal-shooting scheme would

not help in this case.

Finally, Figure 14C shows a case where the normal-shooting method is useful. Using

the closest point matching scheme would lead to the pairs labelled 1. The result may

be that SA is deformed to the right as it is being registered to SB. This is unwanted

deformation. Using the normal shooting method would lead to the pairs labelled 2 and

could therefore prevent such warping.

Rusinkiewicz and Levoy also suggest ignoring point matches where the matched point

lies on a rim of the target surface. This very simple technique is important when the

canonical surface extends beyond the target surface in some places (as is the case with

many surfaces in the dataset) as it prevents the canonical surface from ‘bunching up’ where

there is no corresponding part of the target surface. This is illustrated in Figure 15, where

the closest point scheme would lead to the matches shown. The result would be that,

depending on how localised the transformation is, the red surface would be shifted to the

right, which in many cases is not wanted. This can be avoided by discarding the two

leftmost matches.

Within the field of Computer Graphics, matching surfaces that undergo articulated
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Figure 15: Illustration of the advantages of ignoring rim points.

motion (e.g. bending of the human arm) is a common problem, and this has given rise

to a different breed of algorithms that find matches between points on two surfaces using

a variety of sophisticated methods, sometimes without finding an underlying transforma-

tion. The key to solving such problems is considering geodesic distances (i.e. distance

along the surface of a mesh) rather than Euclidean distances. This approach can cope

very well with large deformations of the mesh if they are close to being isometric in terms

of geodesic distance. This is the case with articulated deformations, such as motion of

the arm relative to the body in a model of a human body, where Euclidean distances

between two points can be very different depending on the pose of the body, but geodesic

distances remain approximately the same. This property is useful to us because it poten-

tially provides a way to account for the ‘almost rigid’ deformation of the neck relative to

the shaft.

Huang et al. describe one such algorithm [32]. Their approach is based on the ICP

method, but they match points based on similarity of a feature vector consisting of 3D

position and principal curvatures and then prune this set of matches to produce a set of

that are consistent in terms of geodesic distance.

The correlated correspondence algorithm of Anguelov et al. [33] is another example.

This algorithm defines a joint probability distribution over the entire set of matches

using the deformation relative to neighbouring points and the consistency of the geodesic

distance between pairs. In this way, the correspondences of neighbouring points become

correlated. They then use numerical inference to produce a consistent set of point matches.

Some authors have chosen to estimate the correspondence between two surfaces via

an intermediate representation in the complex plane [34, 35, 36]. Firstly, a conformal

mapping is estimated from each surface to a canonical representation in the complex

plane (a process known as conformal flattening), and then a transformation between the

canonical representations of the two surfaces is estimated. The advantage of this approach

is that it is geodesic distances rather than Euclidean distances between points that govern

the mapping of the surface to the canonical domain.

Gu and Vemuri [34] find the transformation in the canonical domain that minimises

the difference between the conformal factor (change in area when undergoing a con-

formal mapping) and the mean curvature at each point on the surface. Lipman and

Funkhouser [35] and Boyer et al. [36] use a very similar procedure, but vote for matches

by sampling random transformations within the canonical domain. This approach is of
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particular interest to us as Boyer et al. have shown it to provide useful mappings between

the surfaces of bones such as teeth and radii. Their scheme is discussed further in §5.6.

It would be very interesting to evaluate the application of the other techniques to our

problem, but it was unfortunately beyond the scope of this project to implement and test

them.

5.2 Normal Transformations

In order to incorporate surface normal information into the point matching process, it is

necessary to be able to find the normals of the transformed canonical surface. When a

surface undergoes a transformation T , the normals undergo a transformation which will

be denoted NT .

When T is a linear transformation, there is a convenient form for the normal transfor-

mation, given by Turkowski [37]. If the transformation T is represented by a (3×3) matrix

A (the surface normals are invariant to the translation part of the transformation so this

may be ignored), then the normal transformation is represented by its inverse transpose,

A−T . This does not in general result in a unitary (length-preserving) transformation, so

to get unit normals it is necessary to re-normalise after the transformation. Therefore the

transformed normal at time index t is given by

n
(t)
i = NT (t)(n

(0)
i ) =

(A(t))−Tn
(0)
i

‖(A(t))−Tn
(0)
i ‖

For many types of transformation however, it is impractical to find and use an expres-

sion forNT , so the normals are simply re-estimated after the transformation by considering

normals of the incident triangles on the transformed surface.

5.3 Normal Weighted Point Matching

This scheme is inspired by that of Münch et al. [30], but it is formulated in a way that

allows the spatial hashing to be used to improve efficiency. Only first-order information

(i.e. surface normals) are considered for simplicity, and because the advantage of using

second-order information (i.e. curvatures) is not clear in this case. However, the scheme

could be easily extended to include curvature information. For each vertex i on SA, the

matching vertex i∗ on SB is chosen such that:

i∗ = arg min
j

{
‖δji‖+ λn

(
1− (rj · n(t)

i )
)}

where δji is the 3D Euclidean distance between the two points,

δji = qj − p
(t)
i
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The first term in this cost function represents the distance between the two vertices’

positions (as in the standard ICP process), and the second term represents the dissimi-

larity between their normal vectors, weighted by a non-negative weighting factor λn.

The spatial hashing scheme only hashes points within a limited distance of the point

under consideration. This limits the physical distance between matched points even when

the weighting is heavily towards the normal direction (large λn). This is reasonable

since the initial alignment step should have brought the surfaces comfortably within this

distance of each other already.

A range of different behaviours can be achieved by altering λn. Weight values in the

range 0 < λn ≤ 100 capture the range of behaviours between standard closest point

matches, and matches strongly in favour of normal alignment. Increasing the weight

indefinitely has no effect because of the finite spatial hashing grid size.

5.4 Normal ‘Shooting’ Point Matching

This scheme is inspired by Chen and Medioni’s [9], but again it is formulated in a way

that allows it to take advantage of the existing spatial hashing scheme. Instead of simply

projecting the point from SA to SB along the normal of SA, a weighted cost function is

used which penalises distance between the two points in the plane perpendicular to the

normal of SA, as follows:

i∗ = arg min
j

{
‖δji‖+ λn‖δji −

(
δji · n(t)

i

)
n
(t)
i ‖
}

Here, the second term of the cost function represents the component of the difference

between the two points, δji, that is perpendicular to the normal of surface SA, n
(t)
i . The

range 0 < λn ≤ 5 captures the range of behaviours between closest point matches, and

matches strongly in favour of points along the normal direction.

Another advantage of assigning some weight to the 3D Euclidean distance (rather than

using ‘pure’ normal shooting) is that the problem of finding points on the ‘other side’ of

the surface is reduced.

5.5 Ignoring Rim Point Matches

This is a very straightforward improvement to the existing point matching strategy, de-

scribed by Rusinkiewicz and Levoy [31]. Once the matched points have been found (using

any method), the matches in which the point on SB lies on the rim of mesh SB are dis-

carded. Note that this can be used in combination with either of the above two methods,

although it is less likely to be effective in these cases because the points on the canon-

ical surface that are matched to points on the rim of the target surface are no longer

necessarily the points that lie beyond the rim of the mesh of the target surface.
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Using this method does however create problems when mapping thickness data onto

the canonical femur. Even if rim matches are not ignored by the mapping process, points

on the canonical surface that do not overlap with the target surface will share matched

points on the rim of the target surface. The effect will be extension of the rim thick-

ness value across the non-overlapping part of the canonical surface. The context of the

experiments must therefore be considered when deciding whether to use this option.

5.6 Conformal Flattening Method

Here we describe the method of Boyer et al. [36], which is underpinned by the closely

related work of the co-authors Lipman and Funkhouser [35]. The method is involved and

mathematically complex, and shall not be treated in detail here (an excellent description

is given by Lipman and Funkhouser in their paper). In essence, the algorithm works by

mapping the two surfaces to a canonical representation in the complex plane (not to be

confused with our unrelated canonical model of the femur). Then a search is conducted of

transformations between the two canonical representations, rather than between the two

surfaces themselves. The transformations considered are those in the Möbius Group, which

is the set of one-to-one transformations that map the complex plane to itself isometrically.

Möbius transformations have the simple form:

m(z) =
az + b

cz + d

where a, b, c, d ∈ C are complex numbers such that ad − bc 6= 0. A unique Möbius

transformation that interpolates any three given distinct points may be computed in

closed-form. It is this result that underpins the algorithm.

The steps involved are:

1. A discrete harmonic function and a conjugate harmonic function are defined on each

mesh by solving a sparse system of linear equations. This gives a parametrisation

of the surface.

2. For each mesh, this parametrisation is used to create a mapping from each vertex on

the surface to a point on the complex plane, a process known as conformal flattening.

The result in illustrated in Figure 16.

3. In an iterative process, three random points are taken from each of the two flattened

meshes, and the Möbius transformation that interpolates the two triplets is com-

puted. For each of these transformations, a correspondence map is produced from

mutually closest points. The ‘deformation error’ of this transformation is found by

summing the distances between matched points under the transformation, and this
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is used to build up a fuzzy correspondence matrix between each pair of points by

‘voting’ for correspondences.

4. The fuzzy correspondence matrix is processed to give a consistent correspondence

map between the two surfaces.

The Boyer et al. MATLAB implementation of this algorithm was used to evaluate it

for our purposes1. The output of this software is a correspondence map between the two

input surfaces (i.e. for each point on SA, the index of the corresponding point on SB is

given). Using this correspondence map, the algorithm can be evaluated using the measure

described in §3.2.

Figure 16: The conformal flattening procedure applied to two cat surfaces (top left and
bottom right), and the two representations aligned using a Möbius transformation (bottom
left). Source: Lipman and Funkhouser 2009.

1This is available at http://www.wisdom.weizmann.ac.il/~ylipman/CPsurfcomp/
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6 Results

6.1 Registration Failures

Tests for registration failures were conducted by running 100 iterations of the global

affine registration on each of 604 femurs, using the distinguished points method and the

alternative point matching methods. Registration failures were determined by inspection

as described in §2.1. The results are shown in Table 2.

Experiment Weight Complete
Failures

Lesser
Trochanter
Failures

Existing Process - 1 (0.2%) 38 (6.3%)
Distinguished Points 80 5 (0.8%) 0 (0.0%)
Ignoring Rim Points - 1 (0.2%) 32 (5.3%)
Normal-Weighted Matching† 100 1 (0.2%) 9 (1.5%)
Normal-Shooting Matching† 5 1 (0.2%) 21 (3.5%)

Table 2: Table of results for the distinguished points experiments.
†These experiments also ignored rim points.

6.2 Mesh Distortion

Results for the distortion of the mesh were obtained by registering the canonical surface

to each surface in the database of 604 target femurs and using the mesh distortion metric

presented in §3.2 to evaluate the change in coplanarity of points before and after the

registration process. The overall warping averages the warping value over each of the nine

contours and over all femurs except those where the registration was deemed a failure.

This is shown in Figure 17. Because the metric uses contours perpendicular to each of the

natural axes, total warping in each of these directions can be measured independently by

summing the warping in the three contours perpendicular to that direction and averaging

this over the successful registrations. This is shown in Figure 18. Also, as the lower femur

is of particular interest to us, the distortion of the single contour on the lower femur is

shown in Figure 19, again averaged over the successful registrations.

The parameters used in each of the registrations are shown in Table 3.

Transformation Iterations λDP Parameters
Affine 100 60 -
B-Spline 10 60 -
LAD 15 0 R = 8

Table 3: Table of parameters for the mesh distortion experiments.
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Figure 17: Overall warping and registration error by transformation type.

Figure 18: Warping of the lower shaft only by transformation type.
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Figure 19: Warping in the shaft, neck and other directions by transformation type.

6.3 Alternative Matching Methods

The registration error and mesh distortion were measured after using the normal-weighted

and normal-shooting point matching schemes along with the affine, affine/B-spline and

affine/locally affine transformations to register the 604 femurs with the canonical surface.

The parameters used were those given in Tables 2 and 3. The results are shown in

Figures 20 and 21.

6.4 Synthetic Data

The same tests were run on 100 synthetic surfaces using a further synthetic surface as the

canonical surface. The parameters given in Tables 2 and 3 were again used. This allowed

both the registration error (distance between matched points) and the ground truth error

(distance between the ‘true’ corresponding point pairs) to be measured. These results are

shown in Figure 22.

The results of an additional test using the exact matches are also shown. Here the

matched points in the ICP matching stage were forced to be the ‘true’ matches, such that

the ground truth error is due only to the inability of the chosen transformation to model

the true transformation between the surfaces.
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Figure 20: Overall warping and registration error when using alternative matching meth-
ods (NW normal-weighted, NS normal-shooting).

Figure 21: Warping of the lower shaft when using alternative matching methods (NW
normal-weighted, NS normal-shooting).
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Figure 22: Registration error and ground truth error for the synthetic data experiments
(NW normal-weighted, NS normal-shooting, Ex. exact matching).

6.5 Conformal Flattening

The conformal flattening method was tested on a small number of surfaces from the

dataset in order to get a brief evaluation of its performance. It was found that with

some surfaces produced completely nonsensical registrations, whereas others produced in-

tuitively good matches. Since the output of the process is a list of corresponding vertex,

the process was evaluated by deforming each vertex on the canonical surface to exactly

coincide with its corresponding point on the target surface. Then the warping measure-

ment of §3 can be applied to the canonical surface. Table 4 shows the results for three

successful registrations.

Location Mean Warping Metric /mm
Lower Shaft 2.34
Total Shaft 9.54
Total Neck 10.85
Total Other 11.73
Overall Average 3.57

Table 4: Table of results for the conformal flattening experiments.
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7 Discussion

7.1 Distinguished Points

It can be seen from Table 2 that the distinguished points algorithm of §2.3 successfully

removed the problem of lesser trochanter failures. This comes at the expense of introduc-

ing a small number of ‘complete failures’ where the distinguished points were detected

incorrectly, leading to nonsensical registration. However, the surfaces on which the dis-

tinguished point detection failed had very unusual characteristics, as shown in Figure 23.

Figure 23: Surfaces for which the distinguished point detection algorithm failed.

In two cases (surfaces b and d above), failure was due to detection of one of the

distinguished points at a small area of very high curvature somewhere else on the surface.

These areas are almost certainly the result of an anomaly in the segmentation process

rather than a true feature of the scanned femur, and could be removed by smoothing the

surfaces in the upstream process. In another two cases (surfaces c and e), the greater

trochanter point was detected at a growth on the greater trochanter. In the final case

(surface a), detection of the greater trochanter failed due to the very unusual shape of

the surface. There is no intuitive greater trochanter point in this case.

Given the low failure rate and the difficult nature of the failure cases, it seems un-

necessary to use more sophisticated differential geometry to find distinguished points (for

example using better curvature estimates, or using principal directions). One possible

improvement would be to train the weighting factors automatically, using a dataset with

manually labelled distinguished points.
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7.2 Alternative Transformations

Figures 17, 18 and 19 show that the physical transformation (§4.2) does indeed reduce

the degree of warping of the lower shaft as intended. However, it is also clear that this

comes at the cost of a significant increase in the overall warping of the surface. This is

because the global physical transformation is less able to match the surfaces in the first

stage of the process, so the B-spline stage must warp the surface more to achieve a close

match, particularly around the neck and head.

During the experiments it was observed that the global physical transformation stage

produced a number of poor registrations, especially on surfaces where the shaft-neck angle

or neck length was significantly different from that of the canonical femur (such as the

example in Figure 24). Also, the constrained ‘physical’ B-spline may increase warping of

the upper parts of the femur by forcing the unconstrained control points to undergo more

extreme displacements in order to achieve a match of the head and neck.

Figure 24: Example of a poor global physical registration (left) and the affine registration
of the same surfaces (right).

The locally affine transformation method (§4.3) gives promising results. Due to its

more localised nature, it results in reduced warping over the entire surface when compared

to the B-spline transformation. The process was observed to give intuitively sensible

matches and the obvious warping of the shaft was not seen to the same extent as it is

with B-splines process. Furthermore, unless a relatively large radius parameter is used

(around R > 15), the registration process using the locally affine transformation is often

slightly quicker than using B-splines. The locally affine and B-spline methods performed

similarly in terms of ground truth error in the synthetic data experiments, although the

B-spline method generally gave slightly better performance.

However, the locally affine method used in the experiments does not really address

the fundamental problem of modelling the changes in neck length and shaft-neck angle.

Further work could consider using a multi-stage locally affine process starting with a large

radius parameter, in which case deformations approximating the rigid rotations may be

possible, and then moving to a smaller radius stage to give localised matching.
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7.3 Alternative Matching Schemes

Ignoring the rim matches as described in §5.5 solves six of the original registration failures

from the dataset. As expected these are cases where the canonical surface extends below

the target femur, such as the example shown in Figure 25.

Figure 25: Example of a registration failure (left) that is fixed using the method of ignoring
rim matches (right). Note the alignment of the lesser trochanters in each case.

The normal-shooting and normal-weighted matching methods (§5.3 and §5.4) are able

to further reduce the number of registration failures, with the normal-weighted method

being especially effective. This can be understood from Figure 14, since the problem

of correctly aligning the lesser trochanters is closely related to case B in that diagram.

The methods are not as effective as the use of distinguished points at reducing the regis-

tration failures (it was also noted that the distinguished point method gave subjectively

better registrations for a number of the problematic surfaces, even when the registration

was regarded as a success using both techniques). However they do have the important

advantage of being more robust to ‘unusual’ surface shapes, and so do not suffer from

complete failures in the way that the distinguished point method does.

The normal-weighted method also performed well on the synthetic data, giving a fairly

significant reduction in ground truth error relative to the simple closest point matching

scheme. It is likely the primary cause of this improvement is the superior global align-

ment. However Figure 20 shows that the scheme also has a tendency to lead to increased

warping in the local stage. This could be because it tends to overfit to small scale fea-

tures in the surface (like those in Figure 14B) when choosing matching points, causing

the transformation to distort the surface to match these correspondences. This is not

a problem with the synthetic surfaces because there are no such small scale features on

them.

By contrast, the normal-shooting method gives a small improvement over the closest

point scheme in terms of the warping of the surfaces. This is probably due to its be-

haviour in cases such as those illustrated in Figure 14A and 14C. The performance of this

method on the synthetic data was not significantly different from that of the closest point

matching.
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Based on these findings, a sensible registration process could use the normal-weighted

point matching scheme for the global alignment only. This would bring the large, im-

portant features of the surface into approximate alignment but not overfit to the smaller

features. The local matching stage could then use the normal-shooting method (for its

slightly better warping behaviour) or the closest point method (for simplicity).

Both the normal-shooting and normal-weighted methods are more computationally

expensive than using simple closest points because they entail a wider search through the

spatial hash look-up table. This effect increases as the weight given to the normal part

of the cost function increases. However, this does not have a significant impact on the

overall registration time, which is governed primarily by the nature of the optimisation

in the transformation stage.

Investigation of some further methods of point matching (for example those described

in §5.1) could be the focus of future work.

7.4 Conformal Flattening Method

For those surfaces where the conformal flattening method of §5.6 was found to work, the

matches obtained from it were found to be intuitively good. For example, see Figure 26,

which is a visualisation of some salient point matches found by the technique.

Figure 26: Examples of point matches obtained using the conformal flattening method
to register the canonical femur (left) to a target femur (right). This image was produced
using the Boyer et al. MATLAB implementation.

Despite this initial promise, the warping results obtained using the method are very

poor compared to the other experiments. This is understandable given that there is no

reason why the underlying method would keep planar points planar. The technique may

just be poorly suited to our problem because it is an over-simplification to suggest that

the variation in head-neck angle approximately preserves geometric distances, and there

is much variation between femurs that is clearly not of this nature. Another problem

with the process is that it is far more computationally expensive than the other methods

considered.
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Figure 27: The canonical surface (left) after registration to a target surface (right) using
the conformal flattening method. The loss of surface integrity is apparent.

More worryingly, the there is a small amount of tearing and damage to the structure

of the registered surfaces as shown in Figure 27. A simple solution to this could be to use

the method to produce the point matches, and then find a transformation to minimise

the distance between matched points. In this way the inherent constraints of chosen

transformation would still apply.

More work is needed to really understand this method, whether the results obtained

from it are meaningful for the registration of femurs, and why it fails completely on

some surfaces. Further work could also use specific knowledge about femurs to guide the

process. For example, instead of randomly sampling three points from the surface and

voting for the best transformation, three meaningful distinguished points could be found

and used. This may be able to reduce the occurrence of nonsensical registrations, and

could make the process significantly more computationally efficient.

7.5 Distortion Metric

The chosen warping metric, as described in §3.2, is very simple to compute and its results

have been observed to correlate with the warping observed in visualisations. However, it

does not directly address the issue of what deformation is necessary in order to match the

surfaces, and what deformation is superfluous. Furthermore, it only considers deformation

of a small set of points on the surface (those that lie on one of the chosen contours).

Therefore, conclusions drawn from warping measurements should be treated with caution.

Further work could consider improving the method used for quantifying the warping

undergone by surfaces. Perhaps the method should consider directions in which points can

move relative to their neighbours without affecting the ICP cost function. For example, if

the shaft is considered to be approximately cylindrical, then vertical motion of points on

the shaft does not effect the cost function and should therefore be considered ‘unnecessary’.

Such an approach could use the differential geometry of the surface, and in particular the

principal directions. Torsello et al. consider the number of similar points around a given

point as an indicator of its relevance [38], though they use it for different purposes.
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7.6 Synthetic Data and Local Minima

Figure 22 shows that none of the registration processes considered here are able to come

very close to the ‘best’ registration if corresponding points are known. This shows, perhaps

unsurprisingly, that the ICP cost function is a poor approximation to the true correspon-

dence error between two surfaces. It also shows that the affine/B-spline, and affine/locally

affine combinations are in fact quite capable of modelling the variation in head-neck angle

and head length in principle, but are just not able to do so within the ICP framework.

It is also interesting to note that the ‘exact’ matching gives not only lower ground

truth error, but also lower registration error in the case of the B-spline and locally affine

transformations. This suggests that the optimisation is finding local minima of the ICP

cost function, rather than the true global minimum.

Further investigation into local minima problems on the synthetic data using random

parameter initialisations revealed that both the global and affine stages have a large

number of local minima, and that the outcome is very sensitive to the initialisation. It

is very important to find a good minimum for the global stage (in terms of ground truth

error) in order to achieve low ground truth error at the end of the registration. Often a

local minimum that is better than the one obtained from the existing ‘rough alignment’ (in

terms of ground truth error) can be found by simply trying a few random initialisations

similar to the rough alignment parameters. The same is true of random initialisation

of the B-spline control points about the regularly spaced grid. Furthermore, manually

choosing sensible initialisations often leads to minima with lower ground truth error (for

example, manually moving B-spline control points to approximately match the head-neck

angle before running the optimisation). This opens up the possibility of achieving better

registrations by automatically choosing better initialisations. Such techniques could work,

for example, by aligning the skeletons of the surfaces [39, 40].

The extent to which these findings apply to real data is unclear, since there is no

‘ground truth’ measurement in these cases. Some observations suggest that local minima

are less of a problem in real data than in the synthetic data, especially for the global

stage, because of the smooth, uniform nature of the synthetic surfaces and lack of lesser

and greater trochanters to limit the number of suitable registrations. Choosing sensible

initialisations is more difficult in the case of real data because of the need to match other

features, such as the trochanters, as well as the head and neck. Nevertheless, using simple

synthetic data in this way is a useful process for evaluating registration processes.
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8 Conclusions

This project has investigated a number of different techniques for the registration of femur

surfaces. Firstly, the problem of registration failures was addressed, and it was found that

the selection of particular distinguished points at the tips of the two trochanters is able

to dramatically reduce the number of failures, but is not robust to very unusually shaped

surfaces. The use of differential geometry (in particular surface curvatures) is useful for

the selection of such points.

Secondly, the unnecessary warping of surfaces during transformations was investigated.

A simple quantification of warping based on the transformed positions of coplanar points

was developed. It was found that successfully modelling variations in the head-neck angle

without affecting the rest of the surface is important for avoiding such unwanted distortion,

and that this is difficult to achieve using the ICP framework. Imposing constraints on the

transformations was shown to have unwanted side effects, such as increasing the warping

elsewhere in the surface. A locally affine transformation was found to have advantages

over a B-spline transformation due to its more localised nature.

If used appropriately, some alternative methods for choosing matched point pairs using

surface normal information and ignoring matches on the rims of surfaces were found to

offer small improvements in terms of reducing registration failures and surface warping.

A sophisticated point matching scheme based on conformal flattening of surfaces to

the complex plane was evaluated, and found to perform very poorly due to excessive

warping of the registered surfaces.

It was also found that the use of synthetic data with known ground truth correspon-

dence is a useful tool for evaluating registration processes. In particular, this highlights

the problems of local minima in optimisation schemes and the need for good initialisation

of transformation parameters.

Overall, the registration of femur surfaces is a subtle and difficult problem, and there

is a large variety of techniques drawn from different areas of literature that may be used

to solve it. This project has evaluated a small number of these and found some that

improve the quality of the registration process. A number of possible avenues for further

work have been suggested.
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[38] A. Torsello, E. Rodolà, and A. Albarelli. Sampling relevant points for surface regis-

tration. In Proceedings of the 2011 IEEE International Conference on 3D Imaging,

Modeling, Processing, Visualization and Transmission, pages 290–295, 2011.

[39] T.K. Dey and J. Sun. Defining and computing curve-skeletons with medial geodesic

function. In Eurographics Symposium on Geometry Processing, 2006.

[40] J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, and Z. Su. Point cloud skeletons via

Laplacian based contraction. In Shape Modeling International Conference, pages

187–197, 2010.

45



Appendix

A Risk Assessment Retrospective

The practical parts of this project were entirely computer-based. The original risk assess-

ment identified repetitive strain injury and other health problems related to extended use

of computers, which retrospectively seems appropriate. I was mindful of these problems

during the project and took simple steps to alleviate them. Fortunately, no such problems

did occur.
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