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ABSTRACT

We combine image representations based on the monogenic signal with a
rotation-invariant sliding window detection framework to perform object
localisation in 2D fetal ultrasound images, where invariance to factors such as
image contrast and object orientation is desirable.

INTRODUCTION

Detection of anatomical features (‘objects’) in medical imagery is a common
problem. In fetal ultrasound imagery, we encounter a number of complicating
factors, e.g. variable contrast levels, imaging artefacts such as speckle, shadowing
and enhancement, and unknown orientation of objects relative to the probe.

We combine the monogenic signal, with its proven robustness to the speckle
artefact and contrast variation, with rotation invariant detection methodologies in
order to overcome these problems.

ORIENTED FEATURES FROM THE MONOGENIC SIGNAL

If we retain the filter orientation of the monogenic filters!'! (g, en (X), qoqq(X)) WeE
can define oriented image representations based on the popular feature
symmetry/asymmetry measures!?!:

« Signed feature symmetry - a scalar feature that picks out symmetric areas of the
image, and distinguishes between peaks (positive) and troughs (negative).
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* Oriented feature asymmetry - 2D vector-valued measure giving the magnitude
and direction of image boundaries.
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* Monogenic odd filter - the 2D vector-valued response to the odd filter, g,44(x), is
itself a rich descriptor of an image.
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Fig. 1 - The image representations used in our experiments

ROTATION INVARIANT OBJECT DETECTION

We use a sliding-window object detector using a set of complex-valued, rotation
invariant basis functions (Fig. 2) on circular image windows!3l. The basis functions are
separable into a and rotational part:

u (1,0) = etko

When convolved with an image window, the magnitude of the resulting value is
rotation invariant.
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Fig. 2 - Example set of complex-valued rotation invariant basis functions.
Saturation gives the magnitude and hue gives the argument of the complex value
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FOURIER ORIENTATION HISTOGRAMS

2D vector-valued representations can be described using a magnitude-weighted
orientation histogram (much like the standard HOG method) represented by its low-
order Fourier series coefficientsl? rather than discrete bins. A new image ‘channel’ is
created for each Fourier coefficient, and is described using the basis functions.

FULL DETECTION METHODOLOGY
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Fig. 3 - Flowchart representation of the detection methodology

EXPERIMENTS

We tested our approach on a dataset of 63 videos containing four-chamber views of
the fetal heart in a range of orientations. We created a set of 630 positive (heart) and
630 negative (background) windows and trained a support vector machine on the
feature vectors extracted from these windows.

We tested the monogenic-based measures (above) and compared them to standard
intensity and gradient features. We performed a cross-validation with 7 sets of 90
frames. In the test frames, evaluation was performed using two measures:

« Classification accuracy - proportion of images where the detected heart centre
was less than heart centre was r/3, where r is the heart radius.

« Localisation error - average distance between the detected and true heart
centres, normalised by the heart radius, r.

I N N G
0.87 0.82 0.88 0.84 0.82

Best Classification Accuracy

Best Localisation Error 0.30 0.37 0.21 0.26 0.24

Table 1 - Selected results for intensity (INT), gradient (GRAD), monogenic odd filter
(MGOF), signed feature symmetry (SFS) and oriented feature asymmetry (OFA). Values
for each feature are the best results over a range of basis function parameters

CONCLUSIONS

Reasonable detection performance (87%) can be achieved using intensity features
within a rotation invariant detection framework, and this gives an simple and
efficient rough detector. The monogenic odd filters give similar detection
performance (88%) but a lower localisation error (0.21 compared to 0.30) due to its
ability to capture the structural information in the image. The gradient feature was
particularly ineffective, possibly because of the effect of the speckle artefact.
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