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ABSTRACT

We address the task of object localisation in 2D fetal ultra-
sound images, where invariance to factors such as image con-
trast and object orientation is desirable. We build on recent
methods for rotation-invariant detection and combine them
with oriented measures of image structure derived from the
monogenic signal. We test our approach on images containing
the fetal heart. Our results suggest that although raw intensity
features can achieve robust approximate detection, the struc-
tural measures can achieve better localisation.

Index Terms— Ultrasound, detection, monogenic signal,
rotation invariant, histogram of gradients, feature symme-
try/asymmetry, fetal heart

1. INTRODUCTION

In this paper, we address the task of automated object detec-
tion in ultrasound (US) images. The localisation of anatomical
structures (‘objects’) in US images and videos may be useful
as a first step in clinical procedures, such as automated biome-
try.

However, automated analysis of fetal US imagery is a chal-
lenging problem. A major obstacle is the variable quality of
the images: there may be low contrast levels, speckle distor-
tion, and acoustic shadowing and enhancement artefacts. A
further complication, particular to fetal imaging, is the vari-
able orientation of the fetal anatomy relative to the probe. In
this work, we aim to design an algorithm with a high degree
of robustness to many of these factors.

Previous successful object detection algorithms in the com-
puter vision literature have generally focussed on sliding win-
dow approaches. Typically these use intensity features [1]
or histograms of oriented gradients [2], which are generally
found to have increased robustness to contrast changes.

Other work has found that the low-level monogenic signal
representation provides a description of local US image struc-
ture with robustness to speckle and contrast variations. This
has been used, for example, for boundary detection [3] and to
provide a short-list of candidates for later detection [4], but to
our knowledge has not been integrated fully into detectors.

Most popular object detection algorithms do not directly
address the problem of unknown orientation, but instead re-

sort to running the detector on multiple rotated versions of the
image. In this work we build on recent advances [5] to pro-
vide low-level rotation invariance to detectors. Ultrasound im-
ages are not strictly invariant under rotations, but the rotation-
dependent variation is not very pronounced for soft tissue.

2. DEFINING ORIENTED FEATURES

We follow a number of previous works in using the monogenic
signal [6] to provide a degree of robustness to contrast vari-
ation and speckle distortion in US images. The monogenic
signal is found using an even-symmetric bandpass image filter
(in our case a log-Gabor filter) and two odd-symmetric filters
formed from its Riesz transform. We denote the even part of
the filter response by qe(x), and we express the two odd parts
as a single complex number qo(x). The monogenic odd filter
(MGOF) response itself forms one oriented feature.

Two useful measures that may be derived from the mono-
genic signal [3] are feature symmetry, S(x), and feature asym-
metry, A(x). These quantities capture the intuition that highly
symmetric regions give large responses to the even filter and
low responses to the odd filter, and vice versa for asymmetric
areas (boundaries). The standard definitions [7] are:

S(x) =
b|qe(x)| − |qo(x)| − T c

P (x) + ε
(1)

A(x) =
b|qo(x)| − |qe(x)| − T c

P (x) + ε
(2)

where T is a thresholding value (we empirically set T = 0.18),
ε is a small constant to avoid division by zero, and b·c denotes
the zeroing of negative values. Normalisation by the local am-
plitude, P (x) =

√
|qe(x)|2 + |qo(x)|2 gives a value in the

range 0 to 1 in each case. However, these definitions lose the
directional information since they use only the magnitude of
the filter responses. It is preferable to retain this information,
which leads us to define signed feature symmetry, Ŝ(x), and
oriented feature asymmetry, Â(x) as follows:

Ŝ(x) = S(x) · sgn (qe(x)) (3)

Â(x) = A(x) · qo(x)
|qo(x)|

(4)
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Fig. 1: Feature symmetry and asymmetry measures superim-
posed upon an image of the fetal heart. Colourless areas have
symmetry/asymmetry values of zero due to thresholding.

where sgn(·) is the signum function. See Figure 1.
Signed feature symmetry (SFS) retains the sign of the even

filter response, and hence lies in the range −1 ≤ Ŝ(x) ≤ 1
where negative values correspond to troughs in the image and
positive values to peaks. For later description, we find it ad-
vantageous to split the SFS images into positive and negative
(peak and trough) images and concatenate the descriptors from
each image separately.

Oriented feature asymmetry (OFA) retains the complex
orientation of the odd filter response by multiplying by a unit
complex number whose argument is the local orientation. It
therefore gives a complex-valued representation capturing the
magnitude of the asymmetry and its direction in the image.

3. ROTATION INVARIANT DESCRIPTION

In order to achieve the desired rotation invariance we draw
on the recent method of Liu et al. [5]. The method contains
two distinct developments that together give overall rotation
invariance: Fourier orientation histograms and rotation invari-
ant basis functions. The original formulation was developed
for a gradient representation of the image, but we apply the
same methodology here to a number of different scalar and
directional (2D vector-valued) image representations.

3.1. Orientation Histogram Representation Using Fourier
Coefficients

Standard orientation histogram methods (e.g. [2]) have poor
rotation behaviour as a consequence of discretising the ori-
entation space. Since an orientation histogram is a periodic
function of orientation, an alternative representation is a trun-
cated (smoothed) Fourier series representation. With such a

representation, rotation of the input image leads to a phase
shift of the Fourier series coefficients. Only a few coefficients
are needed to give a discriminative yet robust description.

A weighted Fourier histogram may be formed by con-
sidering each pixel’s orientation in turn as a magnitude-
weighted Dirac δ-distribution in an orientation histogram, and
then representing it by the Fourier series expansion of the δ-
distribution. Using a complex notation for a general 2D vector
representation, v, (e.g. gradient) the mth-order coefficient is
given by:

cm(x) = ‖v(x)‖e−im arg(v(x)), m = 0, 1, . . . ,M (5)

where i =
√
−1 and M is the largest order used. This ex-

pansion generates a group of coefficients {cm} for each pixel.
Spatial aggregation can then take place for each coefficient
order m separately, as if each forms one image channel.

3.2. Rotation Invariant Basis Functions

In order to create a rotation invariant description of a circular
image window, it is integrated against a number of different
circular basis functions. In the most general form, the basis
functions may be expressed in polar coordinates, (r, θ), as:

uj,k(r, θ) = pj(r)e
ikθ for 0 ≤ r < R, 0 ≤ θ < 2π

(6)
Each basis function is the product of an arbitrary radial

profile, p(r), and a Fourier series basis of order k in orienta-
tion. A descriptor is built up using a number of basis functions
uj,k(r, θ) with J different profiles, {pj(r)}j=0,1,...,J−1, and
rotation orders k = −K, . . . ,K.

To build a description for windows centred on each pixel
in an image, each basis function, uj,k(x), is convolved (‘∗’)
with either the input image (or other scalar image representa-
tion such as feature symmetry), or the orientation histogram
coefficient images, cm(x), from directional features (such as
gradient). We can incorporate both cases into the same frame-
work by considering a scalar representation to be an orienta-
tion histogram with a coefficient at m = 0 only. The result is
‘images’ of features, Dj,k,m(x), where

Dj,k,m(x) = uj,k(x) ∗ cm(x) (7)

Because the angular basis is the Fourier basis, rotating the
image by φ results in a simple phase shift of the resulting com-
plex feature by k̂φ, where the feature rotation order k̂ = k−m.
If Dj,k,m describes a window, then Dj,k,me

ik̂φ describes the
rotated version of the same window. Accordingly, the mag-
nitude of the feature, |Dj,k,m|, is analytically rotationally in-
variant (small discrepancies of course arise due to sampling
effects). Note that for m = 0, only bases with k ≥ 0 are used
to avoid redundancy in the feature set.
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Fig. 2: Set of profiles and basis functions with J = 3, K = 4
(only k ≥ 0 displayed). The saturation and hue represent the
complex magnitude and argument respectively.

Following the original work [5], we use a set of overlap-
ping ‘triangular’ profiles. Specifically, if R is the radius of the
support of the largest basis function in the set, and J is the
number of different profiles that make up the set, we use the
set of profiles centred on radii aj = jRJ :

pj(r) =

⌊
1− |r − aj |

R
J

⌋
(8)

for 0 ≤ r < R, j = 0, 1, . . . , J − 1 where b·c represents the
zeroing of negative values (see Figure 2 for an example set).

In practice, it is computationally more efficient to imple-
ment the filtering (7) as a multiplication in the Fourier domain
using fast Fourier tranforms of the image and basis functions.

3.3. Full Description Methodology

The full detection procedure is illustrated in Figure 3. First
we form the image representation using the relevant method
(§2). Then, if it is a directional representation, we form its
Fourier histogram, cm(x), using (5). The images of features,
Dj,k,m(x), are then formed by Fourier domain filtering ac-
cording to (7).

We then form the descriptor vector using all the rotation
invariant quantities in the complex features. This includes the
purely real features for which k = m = 0, the real and imagi-
nary parts of features where k̂ = 0 and k 6= 0, and the magni-
tude of all other features k̂ 6= 0. We discard features with large
rotation order (|k̂| > 4). We then normalise this descriptor vec-
tor using the mean and standard deviation of the descriptors in
the training set, and pass to a support vector machine (SVM).

4. EXPERIMENTS

To test our approach, we address the problem of detecting the
fetal heart in 2D videos taken of the fetal abdomen. Our ex-
periments were conducted on a dataset of 63 videos of fetuses
at a range of gestational ages (16 to 40 weeks) giving a range
of appearances and image qualities. We manually labelled the
position of the heart, defined using the centre and radius of a

circular window fully encompassing all the chambers, in 10
random frames from each video, giving a total of 630 frames.
One ‘background’ window of the same size was also randomly
selected in each of the chosen frames. We split the dataset into
seven partitions of 90 frames each, ensuring that a single video
never contributed frames to both the training and test sets. We
performed a seven-fold cross-validation on this dataset using
these partitions. In each cross-validation iteration, the SVM
parameters were trained using 6 of the 7 partitions, i.e. one
positive and one negative window from each of 540 frames.

Evaluation was performed by passing each detector over
the 90 images in its unseen test partition. The window with the
largest SVM output score was chosen to be the heart detection.
This was compared to the ground truth label, and if the dis-
tance between the two labels’ centres was less than one-third
of the heart radius, the detection was considered correct.

We evaluated algorithms based upon a number of differ-
ent image representations including intensity (INT), gradient
(GRAD, as used in the original work [5]), signed feature sym-
metry and oriented asymmetry (SFS and OFA), and mono-
genic odd filters (MGOF). We also combined representations
by simply concatenating the descriptors before classification.
For each image representation we used a small number of dif-
ferent sets of the parameters J,K,M . The centre-wavelength
of the monogenic bandpass filter was set to λ0 = 75 pixels in
all cases, as this was empirically found to give good results.

We have not yet investigated methods for detecting objects
at different scales. Therefore in these experiments the size of
the basis functions, R, was set to the manual labels. This is
not too unreasonable in practice, since the size of the heart is
relatively predictable given the gestational age, and the physi-
cal dimensions of the pixels is usually known. It is necessary
to normalise the features in proportion to basis function area.

5. RESULTS

Table 1a shows the classification accuracy (as defined above)
of the various detectors. In addition, we show the mean nor-
malised localisation error in Table 1b, where normalisation is
by the manually-labelled heart radius. We see that the simple
intensity detectors perform well in terms of classification accu-
racy (up to 87%), but that their results are significantly worse
for localisation error (≥ 0.3 compared to as low as 0.21 for
monogenic features). This may be because the phase-based
features are better able to exploit the fine image structure to
determine the location more precisely, but are more easily con-
fused by background examples displaying similar structure.

It is interesting to note that gradient-based detectors (as
used in previous work [5]) perform poorly relative to other
features, including intensity. One possible reason is that the
speckle artefact creates confounding gradients in the image.

We see from the results that using a large J generally im-
proves classification performance, suggesting that separating
image structure found at different radii aids detection. By con-
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Fig. 3: Full detection process for a directional representation, Fourier histogram expansion is omitted for scalar representations.

Parameters Image Representation
J K M INT GRAD INT+

GRAD
SFS MGOF OFA SFS+

OFA
SFS+
MGOF

3 4 4 0.70 0.79 0.80 0.81 0.83 0.76 0.78 0.80
4 4 4 0.82 0.78 0.81 0.81 0.81 0.77 0.84 0.84
5 4 4 0.86 0.78 0.80 0.83 0.82 0.79 0.83 0.87
6 4 4 0.87 0.80 0.82 0.84 0.84 0.80 0.83 0.88
4 2 4 0.80 0.80 0.82 0.79 0.83 0.81 0.82 0.88
4 3 4 0.81 0.79 0.82 0.82 0.84 0.80 0.84 0.83
4 5 4 0.82 0.78 0.81 0.81 0.75 0.78 0.84 0.84
4 4 2 - 0.80 0.80 - 0.88 0.82 0.81 0.87
4 4 3 - 0.82 0.81 - 0.87 0.80 0.80 0.88
4 4 5 - 0.79 0.80 - 0.80 0.77 0.82 0.85

(a) Classification accuracies
Parameters Image Representation
J K M INT GRAD INT+

GRAD
SFS MGOF OFA SFS+

OFA
SFS+
MGOF

3 4 4 0.46 0.42 0.35 0.28 0.29 0.34 0.33 0.33
4 4 4 0.36 0.38 0.34 0.28 0.28 0.32 0.28 0.26
5 4 4 0.31 0.35 0.34 0.26 0.26 0.30 0.26 0.23
6 4 4 0.30 0.36 0.32 0.26 0.26 0.30 0.24 0.21
4 2 4 0.37 0.35 0.33 0.32 0.26 0.24 0.29 0.26
4 3 4 0.35 0.39 0.34 0.28 0.25 0.28 0.29 0.27
4 5 4 0.36 0.41 0.36 0.28 0.36 0.30 0.25 0.27
4 4 2 - 0.34 0.32 - 0.21 0.28 0.26 0.21
4 4 3 - 0.37 0.38 - 0.21 0.31 0.32 0.23
4 4 5 - 0.38 0.35 - 0.32 0.35 0.30 0.24

(b) Ground truth distances normalised by heart radius

Table 1: Tables of experimental results for a number of detec-
tors. Bold values are the best for the relevant image represen-
tation, underlined are best overall.

trast, in many cases using large K and M gives poorer results,
suggesting that the higher order features contain little useful
information and may confound the learning process. The best
values for these parameters are likely to vary for structures of
differing complexity. In this case the MGOF seemed a par-
ticularly effective feature with relatively low order histogram
parameters (e.g. J = 4, K = 4, M = 2) as it achieved both a
high classification accuracy of 88% and low average localisa-
tion error of 0.21.

Our MATLAB implementation took between 0.4 s per im-
age (for raw intensity based detectors and low J,K,M ), to
just over 5 s (with phase-based features and large J,K,M ) for
images with side lengths in the range 300 to 600 pixels on a
3.40GHz Intel i7 desktop PC. By comparison, previous work
using spatial-domain convolutions reported 18 s per frame [5].

6. CONCLUSIONS

We have shown that quick, approximate, rotation-invariant de-
tection of anatomical objects in images can be achieved using
rotation invariant basis functions on the raw intensity images.
More accurate localisation can be achieved through the use
of oriented measures derived from the monogenic signal, as
these measures are better able to describe the underlying im-
age structure.
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