Representing
and
Communicating
Al Model
Results in
Standard
DICOM Format
Using the
Python
Programming
Language

Christopher P. Bridge !, Sean W. Doyle ', Andriy Y.
Fedorov 2, Steven Pieper 3 4, Erik Ziegler 4, James
Petts 4, David A. Clunie °, Gordon J. Harris 4 ¢,
Katherine P. Andriole! 2, Jochen K. Lennerz 8,
Markus D. Herrmann 8

I MGH & BWH Center for Clinical Data Science,
Boston, MA, USA

2 Department of Radiology, Brigham and
Women'’s Hospital/Harvard Medical School,
Boston, MA, USA

3 Isomics, Inc., Cambridge, MA, USA
4 Open Health Imaging Foundation, Boston, MA
5 PixeIMed Publishing, LLC., Bangor, PA, USA

6 Department of Radiology, Massachusetts
General Hospital/Harvard Medical School, Boston,
MA, USA

8 Department of Pathology, Massachusetts
General Hospital/Harvard Medical School, Boston,
MA, USA

Motivation

Integrating machine learning (Al) models into clinical workflows requires interoperability
with existing imaging systems

(0]

(0]

Interoperability requires adherence to standards

(0]

For medical imaging, the dominant standard is DICOM

(0]

The existing DICOM standard has methods for representing many forms of ML model
output

However, working with DICOM can be challenging for Al developers:

o Many have limited familiarity with DICOM
o The breadth and complexity of the standard may make it seem inaccessible

o There has been a lack of DICOM tools that are interoperable with standard ML tooling (the
Python programming language, numpy, tensorflow and pytorch)

(0]

Agenda

o Review the parts of the DICOM standard that may be appropriate for
encoding and communicating Al model results

o Structured Reports
o Segmentations
o Secondary Captures
o Demonstrate, with examples, how to encode and communicate Al model

output in these formats using our fully free and open-source (MIT license)
highdicom and dicomweb-client python packages

o Demonstrate how this enables interoperability with existing image storage,
communication and display systems

o Target audience: ML developers and software engineers

Why Use DICOM for Al Model Results?

(0]

DICOM objects can be communicated and stored within existing enterprise imaging
systems alongside the images themselves

(0]

Results can be queried/retrieved along with original imaging study

(0]

Existing viewers may be able to display results stored in DICOM format in an
environment familiar to radiologists

Provides standard fields to enable the tfraceability required for medical care

(0]

(0]

The model for imaging/patient/study metadata is harmonized with with the original
Images.

o This additionally allows metadata to cross-reference to other DICOM objects using native
DICOM identifiers (e.g. UIDs)

Overview of DICOM IODs for Al Results

o DICOM IODs (Information Object Definitions) are different “classes” of DICOM objects
o We recommend the following |ODs for different types of Al model output:

Al Model Output Type Recommended DICOM |IOD
Classification Structured Report

Object Detection Structured Report
Segmentation Segmentation (BINARY type)
Probabilistic Segmentation or Segmentation (FRACTIONAL
Heatmap type)

Other Visual Results Secondary Capture

Overview of highdicom

o Python package providing high-level object-oriented way to create and interface with
DICOM objects

o Creates DICOM objects from:

o Model results (¥l Elgs:)\)

o Study/patient metadata (intelligently automatically copied from source images)
o Descriptive metadata (needs to be provided)

Descriptive Metadata
(native Python types and
highdicom classes)

Pre- Model Input Model Output DICOM Result

process
(pydicom.Dataset) ing (humpy.ndarray) (numpy .ndarray) (pydicom.Dataset)

Imaging Study

highdicom links

o Code on GitHub:
o Documentation on Read the Docs:

o Distribution package on PyPI:

o $ pip install highdicom

https://github.com/mghcomputationalpathology/highdicom
https://highdicom.readthedocs.io/
https://pypi.org/project/highdicom

Classes/Methods Provided By highdicom

o Object-oriented interface for construction of DICOM objects o Abstract base class for Service-Object
Pair (SOP) Class:

:

o Implementation of SOP Classes for Structured Report (SR) modality (highdicom.sr package):
:
:
°

o Implementation of SOP Classes for Segmentation (SEG) modality (highdicom.seg package):
° Segmentation (SOPClass)
o Implementation of SOP Classes for Secondary Capture (highdicom.sc package):

° SCImage (SOPClass)

o Utility functions for facilitating access of DICOM object content
o Filtering content of a Structured Report document:
° find_content_items(dataset: pydicom.Dataset, ...) -> List[pydicom.Dataset]
o lterating over segments of a Segmentation image:
° iter_segments(dataset: pydicom.Dataset) -> Generator[numpy.ndarray]

DICOM Segmentation

o Pixelwise categorization of images into regions of
interest stored as raster graphics:
o Binary, mutually-exclusive multiclass or non-mutually
exclusive multiclass
o Discrete (BINARY type) or probabilistic (FRACTIONAL
fype)
o Created from segmentation mask as a numpy
array

o Accompanied by metadata describing the
meaning of each segment

DICOM segmentation containing
muscle, visceral fat, and subcutaneous
fat segments displayed over the original
abdominal CT scan

Segmentation - Ingredients

o pixel_array — The segmentation mask as a numpy.ndarray

o AlgorithmldentificationSequence - Description of the algorithm used to create the
segmentation

o SegmentDescription — Description of the meaning of each segment

Segmentation Example

1. Create descriptions of algorithm and 2. Create segmentation

pydicom.sr.codedict highdicom.seg.enum SegmentationTypeValues

highdicom.content (highdicom.seg.sop Segmentation

AlgorithmIdentificationSequence, highdicom.uid UID

highdicom.seg.content SegmentDescription

highdicom.seg.enum SegmentAlgorithmTypeValues
segmentation Segmentation (

source_images=[image],

algorithm AlgorithmIdentificationSequence (.
pixel_array-mask,

name="'RSNA2020 Radiology Image Segmentation Example',
segmentation_type=SegmentationTypeValues.BINARY,
family=codes.cid7162 Artificiallntelligence,

segment descriptions=[segment description],
version='v0.1.0') | p [seg ! p 1

series_instance_uid=UID(),
series_number=2,
sop_instance_uid=UID(),

segment_description SegmentDescription(instance number=1,

segment_number=1, manufacturer='MGH Radiology',

segment_1 1='ROI #1',
& —Labe manufacturer_model_name="'AI Demo',

segmented_property category=codes.cid7150 .Tissue,
software_versions='vl',

segmented _property_ type=codes.cid7166.Bone,
. . device_serial_number="'Device X.Y.Z.’
algorithm_type=SegmentAlgorithmTypeValues. AUTOMATIC, - -

algorithm_identification=algorithm

segmentation.save_as(‘filename.dcm’)

DICOM Structured Reports (SRs)

o Structured Reports allow for encoding various clinical findings derived from images
as structured text/data:

o Classificatfion results: e.g. existence of clinical findings (referencing existing coding
ontologies)

o Quantification of findings: e.g. volume, severity score
o Localization results stored as vector graphics (points, bounding boxes, polygons)

o Stored in a hierarchical structure of findings (content tree)
o Various templates are available for defined use cases

Structured Report Example

o In the following code example, we will create a Comprehensive3D SR to describe the
area of vertebral foramen in the cervico-thoracic spine derived from a CT image

Example Comprehensive 3D Structured Report
Content Tree (Simplified)

o MeasurementReport: describes the measurement/finding
o Observation Context
o Observer Context. describes the person or device making the observations

o PlanarROIMeasurementsAndQualitativeEvaluations: describes measurements within a defined
planar region of interest

o ImageRegion3D: a polygon describing the region of interest in the image
o FindingSite: description of the anatomical location of region of interest
o Measurement: the measurement itself

o Value

o Unit

Structured Report Example

1. Import relevant

numpy as np
pydicom.uid generate_uid
pydicom.filereader dcmread
pydicom.sr.codedict codes
highdicom.sr.content (
FindingSite,

ImageRegion3D,

highdicom.sr.enum GraphicTypeValues3D
highdicom.sr.sop Comprehensive3DSR
highdicom.sr.templates (
DeviceObserverIdentifyingAttributes,
Measurement,
MeasurementProperties,
MeasurementReport,
ObservationContext,
ObserverContext,
PersonObserverIdentifyingAttributes,
PlanarROIMeasurementsAndQualitativeEvaluations,

Trackingldentifier,

highdicom.sr.value_types CodedConcept

2. Describe the observing

image file Path('/path/to/image/file’)

image_dataset dcmread(str(image_file))

observer_person_context ObserverContext (

observer_type=codes.DCM.Person,

: ob;;rver_identifying_attributes PersonObserverIdentifyingAttributes (name
ll Ool

observer_device context ObserverContext(
observer_type=codes.DCM.Device,
observer_identifying_attributes=DeviceObserverIdentifyingAttributes(

uid=generate_uid()

)
observation_context ObservationContext (
observer_person_context=observer_person_context,

observer_device_context=observer_device_context,

Structured Report Example (cont.)

3. Describe the region of interest 4. Describe the measurement

measurements [Measurement (
referenced _region ImageRegion3D(name=codes.SCT.AreaOfDefinedRegion,
graphic_type=GraphicTypeValues3D.POLYGON, tracking_identifier=Trackingldentifier(uid=generate_uid()),
graphic_data=np.array ([value=1.7,
(165.0, 200.0, 134.0), unit=codes.UCUM.SquareMillimeter,
(170.0, 200.0, 134.0), properties=MeasurementProperties(
(170.0, 220.0, 134.0), normality=CodedConcept (
(165.0, 220.0, 134.0), value="17621005",
(165.0, 200.0, 134.0), meaning="Normal",
ID scheme_designator="SCT"
frame_of reference uid=image_dataset.FrameOfReferenceUID),

level of significance=codes.SCT.NotSignificant

)]

imaging_measurements [PlanarROIMeasurementsAndQualitativeEvaluations(
finding_sites
L . tracking identifier=Trackingldentifier(
FindingSite(
uid=generate_uid(),
anatomic_location=codes.SCT.CervicoThoracicSpine,
identifier='Planar ROI Measurements'

topographical_modifier=codes.SCT.VertebralForamen
)
referenced _region=referenced_region,
finding_type=codes.SCT.SpinalCord,
measurements=measurements,

finding_sites=finding_sites

Structured Report Example (cont.)

5. Create the structured report

measurement_report MeasurementReport (

observation_context=observation_context,

procedure_reported=codes.LN.CTUnspecifiedBodyRegion,

imaging measurements=imaging_measurements

sr_dataset Comprehensive3DSR(
evidence=[image _dataset],
content=measurement_report[0],
series_number=1,
series_instance_uid=generate_uid(),
sop_instance_uid=generate_uid(),
instance_number=1,

manufacturer="'Manufacturer'

sr_dataset.save _as(‘filename.dcm’)

DICOM Secondary Capture

o General way to store raster imaging data other than original acquisitions
o For example images with “burnt-in” graphics layered on top

o Widely supported by viewers

o Created from numpy array of pixels

o Recommended only if SR/SEG are not possible/appropriate
o More specialized IODs should be preferred

Communicating with Imaging Systems vio
DICOM-Web

o The dicomweb-client python package implements a client to communicate over the
DICOMweb RESTful API to:

o Store DICOM objects (STOW-RS), such as Al results in DICOM format
o Retrieve DICOM objects (WADO-RS), such as model input data
o Query for studies/series/instances based on metadata (QIDO-RS)

o Can therefore interoperate with most existing enterprise/research imaging systems
o |t is also interoperable with both pydicom and highdicom classes

o Documentation:

o Github:

opip install dicomweb-client

https://dicomweb-client.readthedocs.io/
https://github.com/MGHComputationalPathology/dicomweb-client

DICOMweb Example

dicomweb client.api DICOMwebClient

client DICOMwebClient (url="https://mydicomwebserver.com")

instances client.retrieve series(
study_instance_uid='1.2.826.0.1.3680043.8.1055.1.20111103111148288.98361414.79379639",
series_instance_uid='1.2.826.0.1.3680043.8.1055.1.20111103111208937.49685336.24517034"'

segmentation

client.store_instances([segmentation])

Workflow Example

Full Python-based model
integration workflow example:

o Image read using pydicom

o Segmentation via tensorflow
mode|

o Stored as DICOM segmentation
using highdicom

o Communicated via DICOMweb
to open-source DICOM server
Orthanc with dicomweb-client
package

o Rendered by the open-source
web-based OHIF viewer

Summary

o Encoding Al model results in DICOM format can ease integration of model into existing
clinical workflows

o We have described the parts of the DICOM standard appropriate for containing Al
model results or different types

o High-level open-source python packages are available for creating and
communicating DICOM objects with interoperability with numpy/pytorch/tensorflow

o This enables model developers to integrate with existing systems from within a fully
Python-based environment

o Contact:
o Christopher Bridge |)
o Markus Herrmann |)

mailto:cbridge@partners.org
mailto:mdherrmann@mgh.Harvard.edu

Acknowledgements

o MGH & BWH Center for Clinical Data Science (CCDS):
o Alliance for Digital Pathology:

o Quantitative Image Informatics for Cancer Research (QIICR):
Radiomics:

(0]

(0]

National Alliance for Medical Image Computing (NA-MIC):

(0]

Open Health Imaging Foundation (OHIF):

(0]

Imaging Data Commons (IDC):

o highdicom and dicomweb-client conftributors

https://www.ccds.io/
https://digitalpathologyalliance.org/
http://qiicr.org/
https://www.radiomics.io/
https://www.na-mic.org/
http://ohif.org/
https://datascience.cancer.gov/data-commons

