
Representing
and

Communicating
AI Model
Results in
Standard

DICOM Format
Using the
Python

Programming
Language

Christopher P. Bridge 1, Sean W. Doyle 1, Andriy Y.
Fedorov 2, Steven Pieper 3, 4, Erik Ziegler 4, James
Petts 4, David A. Clunie 5, Gordon J. Harris 4, 6,
Katherine P. Andriole1, 2, Jochen K. Lennerz 8,
Markus D. Herrmann 8

1 MGH & BWH Center for Clinical Data Science,
Boston, MA, USA
2 Department of Radiology, Brigham and
Women’s Hospital/Harvard Medical School,
Boston, MA, USA
3 Isomics, Inc., Cambridge, MA, USA
4 Open Health Imaging Foundation, Boston, MA
5 PixelMed Publishing, LLC., Bangor, PA, USA
6 Department of Radiology, Massachusetts
General Hospital/Harvard Medical School, Boston,
MA, USA
8 Department of Pathology, Massachusetts
General Hospital/Harvard Medical School, Boston,
MA, USA

Motivation

◦ Integrating machine learning (AI) models into clinical workflows requires interoperability
with existing imaging systems

◦ Interoperability requires adherence to standards
◦ For medical imaging, the dominant standard is DICOM

◦ The existing DICOM standard has methods for representing many forms of ML model
output

◦ However, working with DICOM can be challenging for AI developers:
◦ Many have limited familiarity with DICOM
◦ The breadth and complexity of the standard may make it seem inaccessible
◦ There has been a lack of DICOM tools that are interoperable with standard ML tooling (the

Python programming language, numpy, tensorflow and pytorch)

Agenda

◦ Review the parts of the DICOM standard that may be appropriate for
encoding and communicating AI model results
◦ Structured Reports
◦ Segmentations
◦ Secondary Captures

◦ Demonstrate, with examples, how to encode and communicate AI model
output in these formats using our fully free and open-source (MIT license)
highdicom and dicomweb-client python packages
◦ Demonstrate how this enables interoperability with existing image storage,

communication and display systems
◦ Target audience: ML developers and software engineers

Why Use DICOM for AI Model Results?

◦ DICOM objects can be communicated and stored within existing enterprise imaging
systems alongside the images themselves

◦ Results can be queried/retrieved along with original imaging study
◦ Existing viewers may be able to display results stored in DICOM format in an

environment familiar to radiologists

◦ Provides standard fields to enable the traceability required for medical care
◦ The model for imaging/patient/study metadata is harmonized with with the original

images.
◦ This additionally allows metadata to cross-reference to other DICOM objects using native

DICOM identifiers (e.g. UIDs)

Overview of DICOM IODs for AI Results

◦ DICOM IODs (Information Object Definitions) are different “classes” of DICOM objects
◦ We recommend the following IODs for different types of AI model output:

AI Model Output Type Recommended DICOM IOD
Classification Structured Report
Object Detection Structured Report
Segmentation Segmentation (BINARY type)
Probabilistic Segmentation or
Heatmap

Segmentation (FRACTIONAL
type)

Other Visual Results Secondary Capture

Overview of highdicom

◦ Python package providing high-level object-oriented way to create and interface with
DICOM objects

◦ Creates DICOM objects from:
◦ Model results (numpy.ndarray)
◦ Study/patient metadata (intelligently automatically copied from source images)
◦ Descriptive metadata (needs to be provided)

Imaging Study
(pydicom.Dataset)

Model Input
(numpy.ndarray)

Model Output
(numpy.ndarray)

DICOM Result
(pydicom.Dataset)

Descriptive Metadata
(native Python types and

highdicom classes)

Pre-
process

ing
Model highdicom

highdicom links

◦ Code on GitHub: https://github.com/mghcomputationalpathology/highdicom
◦ Documentation on Read the Docs: https://highdicom.readthedocs.io

◦ Distribution package on PyPI: https://pypi.org/project/highdicom

◦ $ pip install highdicom

https://github.com/mghcomputationalpathology/highdicom
https://highdicom.readthedocs.io/
https://pypi.org/project/highdicom

Classes/Methods Provided By highdicom

◦ Object-oriented interface for construction of DICOM objects o Abstract base class for Service-Object
Pair (SOP) Class:
◦ class SOPClass(pydicom.Dataset)
◦ Implementation of SOP Classes for Structured Report (SR) modality (highdicom.sr package):

◦ class EnhancedSR(SOPClass)
◦ class ComprehensiveSR(SOPClass)
◦ class Comprehensive3DSR(SOPClass)

◦ Implementation of SOP Classes for Segmentation (SEG) modality (highdicom.seg package):
◦ class Segmentation(SOPClass)

◦ Implementation of SOP Classes for Secondary Capture (highdicom.sc package):
◦ class SCImage(SOPClass)

◦ Utility functions for facilitating access of DICOM object content
◦ Filtering content of a Structured Report document:

◦ def find_content_items(dataset: pydicom.Dataset, ...) -> List[pydicom.Dataset]
◦ Iterating over segments of a Segmentation image:

◦ def iter_segments(dataset: pydicom.Dataset) -> Generator[numpy.ndarray]

DICOM Segmentation
◦ Pixelwise categorization of images into regions of

interest stored as raster graphics:
◦ Binary, mutually-exclusive multiclass or non-mutually

exclusive multiclass
◦ Discrete (BINARY type) or probabilistic (FRACTIONAL

type)

◦ Created from segmentation mask as a numpy
array

◦ Accompanied by metadata describing the
meaning of each segment

DICOM segmentation containing
muscle, visceral fat, and subcutaneous
fat segments displayed over the original
abdominal CT scan

Segmentation - Ingredients

◦ pixel_array – The segmentation mask as a numpy.ndarray
◦ AlgorithmIdentificationSequence - Description of the algorithm used to create the

segmentation
◦ SegmentDescription – Description of the meaning of each segment

Segmentation Example

from pydicom.sr.codedict import codes

from highdicom.content import (

AlgorithmIdentificationSequence,

)

from highdicom.seg.content import SegmentDescription

from highdicom.seg.enum import SegmentAlgorithmTypeValues

Describe the segmentation algorithm used by the model

algorithm = AlgorithmIdentificationSequence(

name='RSNA2020 Radiology Image Segmentation Example',

family=codes.cid7162.ArtificialIntelligence,

version='v0.1.0'

)

Describe the predicted segment that represents the ROI

segment_description = SegmentDescription(

segment_number=1,

segment_label='ROI #1',

segmented_property_category=codes.cid7150.Tissue,

segmented_property_type=codes.cid7166.Bone,

algorithm_type=SegmentAlgorithmTypeValues.AUTOMATIC,

algorithm_identification=algorithm

)

from highdicom.seg.enum import SegmentationTypeValues

from highdicom.seg.sop import Segmentation

from highdicom.uid import UID

Construct Segmentation image instance

segmentation = Segmentation(

source_images=[image], # type: List[pydicom.Dataset]

pixel_array=mask, # type: numpy.ndarray

segmentation_type=SegmentationTypeValues.BINARY,

segment_descriptions=[segment_description],

series_instance_uid=UID(),

series_number=2,

sop_instance_uid=UID(),

instance_number=1,

manufacturer='MGH Radiology',

manufacturer_model_name='AI Demo',

software_versions='v1',

device_serial_number='Device X.Y.Z.’

)

segmentation.save_as(‘filename.dcm’)

1. Create descriptions of algorithm and
segments

2. Create segmentation

DICOM Structured Reports (SRs)
◦ Structured Reports allow for encoding various clinical findings derived from images

as structured text/data:
◦ Classification results: e.g. existence of clinical findings (referencing existing coding

ontologies)
◦ Quantification of findings: e.g. volume, severity score
◦ Localization results stored as vector graphics (points, bounding boxes, polygons)

◦ Stored in a hierarchical structure of findings (content tree)
◦ Various templates are available for defined use cases

Structured Report Example

◦ In the following code example, we will create a Comprehensive3D SR to describe the
area of vertebral foramen in the cervico-thoracic spine derived from a CT image

Example Comprehensive 3D Structured Report
Content Tree (Simplified)

◦ MeasurementReport: describes the measurement/finding
◦ Observation Context

◦ Observer Context: describes the person or device making the observations
◦ PlanarROIMeasurementsAndQualitativeEvaluations: describes measurements within a defined

planar region of interest
◦ ImageRegion3D: a polygon describing the region of interest in the image
◦ FindingSite: description of the anatomical location of region of interest
◦ Measurement: the measurement itself

◦ Value
◦ Unit

Structured Report Example

import numpy as np

from pydicom.uid import generate_uid

from pydicom.filereader import dcmread

from pydicom.sr.codedict import codes

from highdicom.sr.content import (

FindingSite,

ImageRegion3D,

)

from highdicom.sr.enum import GraphicTypeValues3D

from highdicom.sr.sop import Comprehensive3DSR

from highdicom.sr.templates import (

DeviceObserverIdentifyingAttributes,

Measurement,

MeasurementProperties,

MeasurementReport,

ObservationContext,

ObserverContext,

PersonObserverIdentifyingAttributes,

PlanarROIMeasurementsAndQualitativeEvaluations,

TrackingIdentifier,

)

from highdicom.sr.value_types import CodedConcept

Path to single-frame CT image instance stored as PS3.10 file

image_file = Path('/path/to/image/file’)

Read CT Image data set from PS3.10 files on disk

image_dataset = dcmread(str(image_file))

Describe the context of reported observations: the person that reported

the observations and the device that was used to make the observations

observer_person_context = ObserverContext(

observer_type=codes.DCM.Person,

observer_identifying_attributes=PersonObserverIdentifyingAttributes(name
='Foo'))

observer_device_context = ObserverContext(

observer_type=codes.DCM.Device,

observer_identifying_attributes=DeviceObserverIdentifyingAttributes(

uid=generate_uid()

)

)

observation_context = ObservationContext(

observer_person_context=observer_person_context,

observer_device_context=observer_device_context,

)

1. Import relevant
classes

2. Describe the observing
device

Structured Report Example (cont.)
Describe the imaging measurements for the image region defined above

measurements = [Measurement(

name=codes.SCT.AreaOfDefinedRegion,

tracking_identifier=TrackingIdentifier(uid=generate_uid()),

value=1.7,

unit=codes.UCUM.SquareMillimeter,

properties=MeasurementProperties(

normality=CodedConcept(

value="17621005",

meaning="Normal",

scheme_designator="SCT"

),

level_of_significance=codes.SCT.NotSignificant

)

)]

imaging_measurements = [PlanarROIMeasurementsAndQualitativeEvaluations(

tracking_identifier=TrackingIdentifier(

uid=generate_uid(),

identifier='Planar ROI Measurements'

),

referenced_region=referenced_region,

finding_type=codes.SCT.SpinalCord,

measurements=measurements,

finding_sites=finding_sites

)]

Describe the image region for which observations were made

(in physical space based on the frame of reference)

referenced_region = ImageRegion3D(

graphic_type=GraphicTypeValues3D.POLYGON,

graphic_data=np.array([

(165.0, 200.0, 134.0),

(170.0, 200.0, 134.0),

(170.0, 220.0, 134.0),

(165.0, 220.0, 134.0),

(165.0, 200.0, 134.0),

]),

frame_of_reference_uid=image_dataset.FrameOfReferenceUID

)

Describe the anatomic site at which observations were made

finding_sites = [

FindingSite(

anatomic_location=codes.SCT.CervicoThoracicSpine,

topographical_modifier=codes.SCT.VertebralForamen

),

]

4. Describe the measurement3. Describe the region of interest

Structured Report Example (cont.)
Create the report content

measurement_report = MeasurementReport(

observation_context=observation_context,

procedure_reported=codes.LN.CTUnspecifiedBodyRegion,

imaging_measurements=imaging_measurements

)

Create the Structured Report instance

sr_dataset = Comprehensive3DSR(

evidence=[image_dataset],

content=measurement_report[0],

series_number=1,

series_instance_uid=generate_uid(),

sop_instance_uid=generate_uid(),

instance_number=1,

manufacturer='Manufacturer'

)

sr_dataset.save_as(‘filename.dcm’)

5. Create the structured report

DICOM Secondary Capture

◦ General way to store raster imaging data other than original acquisitions
◦ For example images with “burnt-in” graphics layered on top

◦ Widely supported by viewers

◦ Created from numpy array of pixels

◦ Recommended only if SR/SEG are not possible/appropriate
◦ More specialized IODs should be preferred

Communicating with Imaging Systems via
DICOM-Web

◦ The dicomweb-client python package implements a client to communicate over the
DICOMweb RESTful API to:
◦ Store DICOM objects (STOW-RS), such as AI results in DICOM format
◦ Retrieve DICOM objects (WADO-RS), such as model input data
◦ Query for studies/series/instances based on metadata (QIDO-RS)

◦ Can therefore interoperate with most existing enterprise/research imaging systems

◦ It is also interoperable with both pydicom and highdicom classes

◦ Documentation: https://dicomweb-client.readthedocs.io
◦ Github: https://github.com/MGHComputationalPathology/dicomweb-client

◦ pip install dicomweb-client

https://dicomweb-client.readthedocs.io/
https://github.com/MGHComputationalPathology/dicomweb-client

DICOMweb Example
from dicomweb_client.api import DICOMwebClient

Create a client object to communicate to the DICOMweb server

client = DICOMwebClient(url="https://mydicomwebserver.com")

Pull down a known imaging study for processing

Returns a list of pydicom datasets

instances = client.retrieve_series(

study_instance_uid='1.2.826.0.1.3680043.8.1055.1.20111103111148288.98361414.79379639',

series_instance_uid='1.2.826.0.1.3680043.8.1055.1.20111103111208937.49685336.24517034'

)

Preprocess datasets, run AI model, encode results in segmentation object

segmentation = ...

Store the segmentation result

client.store_instances([segmentation])

Workflow Example

Full Python-based model
integration workflow example:
◦ Image read using pydicom
◦ Segmentation via tensorflow

model
◦ Stored as DICOM segmentation

using highdicom
◦ Communicated via DICOMweb

to open-source DICOM server
Orthanc with dicomweb-client
package

◦ Rendered by the open-source
web-based OHIF viewer

Summary

◦ Encoding AI model results in DICOM format can ease integration of model into existing
clinical workflows

◦ We have described the parts of the DICOM standard appropriate for containing AI
model results or different types

◦ High-level open-source python packages are available for creating and
communicating DICOM objects with interoperability with numpy/pytorch/tensorflow

◦ This enables model developers to integrate with existing systems from within a fully
Python-based environment

◦ Contact:
◦ Christopher Bridge (cbridge@partners.org)
◦ Markus Herrmann (mdherrmann@mgh.harvard.edu)

mailto:cbridge@partners.org
mailto:mdherrmann@mgh.Harvard.edu

Acknowledgements

◦ MGH & BWH Center for Clinical Data Science (CCDS): https://www.ccds.io
◦ Alliance for Digital Pathology: https://digitalpathologyalliance.org

◦ Quantitative Image Informatics for Cancer Research (QIICR): http://qiicr.org
◦ Radiomics: https://www.radiomics.io

◦ National Alliance for Medical Image Computing (NA-MIC): https://www.na-mic.org

◦ Open Health Imaging Foundation (OHIF): http://ohif.org
◦ Imaging Data Commons (IDC): https://datascience.cancer.gov/data-commons

◦ highdicom and dicomweb-client contributors

https://www.ccds.io/
https://digitalpathologyalliance.org/
http://qiicr.org/
https://www.radiomics.io/
https://www.na-mic.org/
http://ohif.org/
https://datascience.cancer.gov/data-commons

