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Abstract

This thesis addresses the task of developing automatic algorithms for analysing the
two-dimensional ultrasound video footage obtained from fetal heart screening scans.
These scans are typically performed in the second trimester of pregnancy to check
for congenital heart anomalies and require significant training and anatomical
knowledge to perform.

The aim is to develop a tool that runs at high frame rates with no user
initialisation and infers the visibility, position, orientation, view classification,
and cardiac phase of the heart, and additionally the locations of cardiac structures
of interest (such as valves and vessels) in a manner that is robust to the various
sources of variation that occur in real-world ultrasound scanning. This is the first
work to attempt such a detailed automated analysis of these videos.

The problem is posed as a Bayesian filtering problem, which provides a principled
framework for aggregating uncertain measurements across a number of frames whilst
exploiting the constraints imposed by anatomical feasibility. The resulting inference
problem is solved approximately with a particle filter, whose state space is partitioned
to reduce the problems associated with filtering in high-dimensional spaces.

Rotation-invariant features are captured from the videos in an efficient way
in order to tackle the problem of unknown orientation. These are used within
random forest learning models, including a novel formulation to predict circular-
valued variables.

The algorithm is validated on an annotated clinical dataset, and the results are
compared to estimates of inter- and intra-observer variation, which are significant
in both cases due to the inherent ambiguity in the imagery. The results suggest
that the algorithm’s output approaches these benchmarks in several respects, and
fall slightly behind in others.

The work presented here is an important first step towards developing automated
clinical tools for the detection of congenital heart disease.
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This thesis investigates automated image analysis algorithms to assist with
ultrasound screenings for congenital heart disease (CHD). This chapter describes
CHD and the associated screening procedures currently used in clinical practice
before outlining the contributions of this thesis.

1.1 Anatomy and Function of the Fetal Heart

The anatomy of the fetal heart and the surrounding vasculature at gestational
ages of approximately 18 weeks and beyond is relevant here, as this is the time
when screening for CHD typically takes place. A basic overview of the relevant
anatomy is presented here for the reader who is unfamiliar with this material. For a
more detailed discussion, the reader should consider the texts by Yagel, Silverman

1



2 1.1. Anatomy and Function of the Fetal Heart

and Gembruch [1] (for a thorough discussion) and Archer and Manning [2] (for
a more concise introduction).

Figure 1.1 shows the anatomy of the fetal heart during this period. By this
stage of development, the fetal heart has developed the four chambers of the adult
heart (the left ventricle, right ventricle, left atrium and right atrium) and has begun
to circulate blood through the fetal cardiovascular system.

Broadly, the cardiac cycle can be considered to have two stages, known as
ventricular diastole and ventricular systole. Hereafter, these shall be referred as
simply diastole and systole. During diastole (Figure 1.1b), the two atrioventricular
valves (the mitral valve on left side and the tricuspid valve on the right) open and
blood moves from the atria to fill the ventricles, which expand. Blood is drawn
into the left atrium from the lungs via the pulmonary veins and into the right
atrium from the body via the inferior and superior venae cavae. Towards the
end of diastole the atria contract to force blood into the ventricles. On the left
side, blood moves through the open mitral valve from the left atrium into the
left ventricle, whereas on the right side blood moves through the open tricuspid
valve from the right atrium into the right ventricle.

During systole (Figure 1.1c), the atrioventricular valves close and the ventricles
contract, forcing blood out of the heart through the two semi-lunar valves (the
aortic valve and the pulmonary valve). On the left side, blood leaves the left
ventricle through the aortic valve into the aorta. The ascending aorta exits the
heart moving in a cephalad direction (towards the head) and arches over at the
aortic arch to head in a caudad direction (towards the ‘tail’) to the rest of the
body. Beyond the aortic arch it is referred to as the descending aorta. On the right
side, blood is ejected from the right ventricle through the pulmonary valve and
enters the pulmonary artery, which bifurcates into the left and right pulmonary
arteries that lead to the left and right lungs.

The heart wall consists of the pericardium, a fluid-filled sac containing the
heart, the epicardium, a layer of connective tissue on the exterior of the heart wall,
the myocardium, the muscular middle layer, and the endocardium, which lines the
chambers. The interventricular septum is the wall separating the left and right
ventricles. Similarly, the atrial septum separates the two atria.

In cardiovascular systems of adults and children, oxygen exchange occurs in the
lungs and the left side of the heart circulates oxygenated blood around the body
while the right side of the heart circulates deoxygenated blood to the lungs. By
contrast, the fetus is supplied with oxygen from the mother via the placenta and
umbilical vein and therefore high blood supply to the fetal lungs is not necessary
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(a) Anatomy of the fetal heart.

(b) Diastole. (c) Systole.

Figure 1.1: Anatomy of the fetal heart and fetal cardiac cycle.
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and the left and right sides of the heart do not need to be separated. Accordingly,
there is a gap in the atrial septum connecting the two atria called the foramen
ovale, which allows blood to pass from the right atrium to the left atrium, thereby
bypassing pulmonary circulation. Furthermore, the ductus arteriosus (arterial duct)
connects the pulmonary artery to the descending aorta and allows most of the blood
ejected from the right ventricle to bypass the lungs. In the absence of abnormalities,
both the foramen ovale and ductus arteriosus close shortly after birth in order to
prevent oxygenated and deoxygenated blood mixing.

The fetal heart rate varies with gestational age, but is generally far higher than
adult heart rates and in the range 120 to 160 beats per minute.

1.2 Congenital Heart Disease (CHD)

Congenital heart disease (CHD) is a term used to refer to abnormalities of the
heart that are present at birth. This includes a wide variety of defects that affect
different areas of the anatomy, and these often co-occur and interact in complex
ways. Table 1.1 contains a non-exhaustive list of such abnormalities.

It is estimated that approximately 8 in 1000 live births are affected by some
form of CHD [2], and the incidence in the antenatal population is higher due to
miscarried and terminated fetuses with CHD. It is therefore one of the most common
types of birth defect. It is also a leading cause of infant death, accounting for an
estimated 42% of infant deaths according to the World Health Organisation [3].
Reducing infant mortality is widely recognised as an important global challenge, as
demonstrated by its inclusion in the UN Millennium Development Goals [4].

The prognosis and treatment of CHD varies with the nature of the defect. Mild
defects may require no treatment and improve naturally over time after birth.
However, many defects require surgery or medication shortly after birth. CHD is
also associated with a number of developmental problems in early life, in particular
restricted physical activity. Furthermore, CHD may cause complications during
pregnancy for the mother, especially when she has an existing heart condition. It is
therefore highly desirable to detect CHD antenatally such that the condition can
be further investigated and monitored and in order to prepare for any interventions
that may be necessary. Various researchers have concluded that antenatal diagnosis
of a number of heart defects improves outcomes for the fetus [5–9]. In particular, it
has been found that antenatal detection of transposition of the great arteries [6]
and coarctation (narrowing) of the aorta [9] reduces neonatal mortality.
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Name Incidence Description
Partial/Total
Anomalous
Pulmonary Venous
Drainage
(PAPVD/TAPVD)

< 1% One or more of the pulmonary
veins drain into somewhere other
than the left atrium.

Mitral/Tricuspid
Atresia

Rare/1-3% Obstruction of flow across the mi-
tral/tricuspid valve.

Hypoplastic Left
Heart Syndrome

1% An underdeveloped and function-
ally inadequate left side of the
heart.

Coarctation of the
Aorta

8-10% Narrowing of the aorta.

Ebstein’s Anomaly < 1% Unusual placement of the tricus-
pid valve towards the apex of the
heart.

Pulmonary Stenosis 5-8% Obstruction of blood flow from the
right ventricle to the pulmonary
artery.

Double Inlet Left
Ventricle

1% Both atrioventricular valves open
into the left ventricle.

Persistent Truncus
Arteriosus

< 1% Incomplete separation of the pul-
monary artery and aorta during
development.

Transposition of the
Great Arteries

5% The aorta arises from the right
ventricle and the pulmonary
artery from the left ventricle.

Ventricular Septal
Defect

25% An opening in the ventricular sep-
tum.

Atrial Septal Defect 10% An anomalous opening in the
atrial septum.

Situs Inversus 2% Mirror-image location of the heart
(and other organs), within the
abdomen.

Bradycardia/
Tachycardia

– Unusually slow/fast heart rate.

Table 1.1: Forms of congenital heart disease. Compiled from information in Archer and
Manning [2]. Incidence rates are the estimated proportion of CHD cases (NB not the
proportion of the general population) with the relevant anomaly.
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1.3 Antenatal Ultrasound Screening for CHD

The standard method for antenatal detection of CHD is a 2D ultrasound scan.
This is due to a number of factors including: the low cost and high portability of
ultrasound technology relative to most other imaging modalities, meaning that it is
suitable for high volume screening procedures; the fact that an ultrasound scan does
not expose the developing fetus or mother to potentially harmful ionising radiation;
and the high temporal resolution (typically in the range 30 Hz to 60 Hz giving at
least 10 frames per cardiac cycle), which is necessary to capture abnormalities
in the cardiac function.

In many countries, including the United Kingdom, all mothers are given a
general screening scan in the middle of the second trimester of pregnancy (at
around 18-22 weeks of gestational age) in order to determine gestational age, assess
fetal development, and screen for abnormalities (including, but not limited to,
cardiac abnormalities). The International Society of Ultrasound in Obstetrics and
Gynecology (ISUOG) issues guidelines for these mid-trimester screening scans.
The guidelines issued in 2011 [10] suggest that the four-chamber view of the fetal
heart – a view in which all four chambers of the heart and the atrioventricular
valves are visible – should be included in all routine mid-trimester scans, and that
further outflow tract views – showing the pulmonary artery and aorta leaving the
ventricles – can be included for ‘extended’ screenings (these views are defined in
more detail in §1.4.4). Where an abnormality is found or suspected, the mother is
referred to a fetal cardiac specialist for a more detailed diagnostic scan, referred
to as a fetal echocardiogram [11].

However, a more recent set of guidelines specific to the heart [3] was issued in
2013 and emphasise the need to include a number of different views of the fetal
heart in the routine scan in order to detect defects of the pulmonary artery and
aorta such as coarctation of the aorta and double outlet right ventricle.

1.3.1 Factors Limiting the Rates of Detection of CHD

There are a number of important factors limiting the success of screening procedures
for CHD, discussed by Chaoui [12].

Many of these factors are a consequence of the fact that screening scans are a
highly skilled task for a clinician to perform. During a diagnostic scanning session,
a sonographer must simultaneously operate the imaging system, navigate the probe
around the 3D anatomy, communicate with the patient, and make the diagnosis of
interest. This requires an excellent knowledge of fetal anatomy and the wide range
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of potential problems that can occur (Table 1.1), some of which have very subtle
appearances in ultrasound images and many of which occur so rarely that a non-
specialist will rarely or never be exposed to them [12]. However those performing
the routine mid-trimester screening scans will typically not be cardiac specialists.

Interpretation of the ultrasound videos is challenging due to the indistinct
appearance of structures and boundaries and the presence of imaging artefacts
such as speckle, acoustic shadowing, acoustic enhancement, and drop-out artefacts.
Navigating the probe’s imaging plane around the 3D environment inside the fetus
and finding the correct views is also an acquired skill and requires good physical
co-ordination. This is especially true when imaging the fetal heart, which is
approximately 2 cm across at 18 weeks gestation [13]. Furthermore, appropriate
imaging parameters (such as frequency and magnification) must be chosen in
order to acquire useful images.

The fetal lie (the position of the fetus in the uterus) can cause complications if
the fetus is in an unfavourable position, for example positioned such that the fetal
spine casts the heart into an acoustic shadow. Another factor that significantly
reduces image quality is maternal obesity, as body fat attenuates the ultrasound
beam. In other cases, the defect may simply not be visible on an ultrasound
examination, or may not have developed by the time the screening takes place.

Furthermore, routine scans typically occur in time-pressured environments in
which there are a large number of other tasks to perform besides screening for
CHD. These include fetal biometry measurements, determining the fetus’s sex,
and checks on a number of other organ systems. Consequently, the sonographer
only has a short time in which to concentrate on the heart, acquire the relevant
videos and make a diagnosis.

Several studies have concluded that many defects, mostly those involving the
vasculature around the heart, are missed because they are not visible from the
four-chamber view of the heart [12, 14, 15]. It was this conclusion that led to the
recommendation to include outflow tract views in the routine scans [3]. However
this increases the level of training needed to perform a scan and also increases
time pressure during scanning sessions.

There are therefore a number of reasons why screening scans may fail to detect
cardiac defects. Some of these, such as the fetal lie and maternal obesity, are
beyond the control of the sonographer performing the scan. However, many are
human errors as a result of the huge complexity of the task. Accordingly, a number
of studies have concluded that the skill of the sonographer is a key factor in
determining the detection rate of CHD and that improved training for sonographers
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can increase detection rates significantly [12, 16–18]. For example, Pézard et al. [17]
estimated from a long term study in France that detection rates of CHD were 16%
for non-specialists, 36% for non-specialists with training, and 90% for experts.

The problem of low detection rates is particularly acute in the developing
world, in part due to a lack of trained personnel [19]. In other areas of medicine,
studies have suggested that access to skilled sonographers is a more important
barrier to healthcare in the developing world than access to equipment [20]. The
recent advent of inexpensive and portable ultrasound hardware, some of which can
plug into laptop computers or even phones and tablets (such as the GE Vscan
Portfolio and Phillips Lumify product ranges) has the potential to widen access to
ultrasound devices dramatically for diagnostic purposes, especially in developing
world settings. However, unless this is accompanied by a large increase in the
number of trained operators, the level of skill required to operate them will still
remain a significant barrier to their deployment.

1.4 Aims and Contributions of this Thesis

1.4.1 Research Direction

Given the dependence of detection rates for CHD on the experience and training
of sonographers, it is clear that improved training has an important part to play
in improving worldwide detection rates. However, with the recent advances in the
fields of machine learning and computer vision it is natural to ask whether this
problem can also be tackled from another direction, namely by providing automated
tools in order to reduce the skill level needed to perform a scan and reduce the
chances of human error contributing to a missed diagnosis.

Previous research has successfully applied image analysis and computer vision
algorithms to ultrasound images for a number of other medical applications (see
§2.2 for a review of this literature). However the majority of these focus on making
diagnoses or measurements as a post-processing step that operates on carefully
acquired input images (or volumes for 3D ultrasound). This relies upon the skill
and experience of the sonographer to capture the correct videos in the first place.
Furthermore, this does not fit into the natural workflow for ultrasound screening
scans, where the sonographer simultaneously acquires and analyses the videos to
make an immediate diagnosis. In such a setting, the processes of acquiring and
analysing the videos cannot be neatly disentangled because an understanding of
the videos is required to guide the probe to the relevant anatomy, and suspected
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anomalies may prompt further investigations which will dictate which images
should be acquired next.

Automated tools to assist in diagnosing congenital heart disease should therefore
work at the acquisition stage rather than form a separate post-processing stage. In
this thesis, the aim is to develop such a tool to assist sonographers in performing
effective screening scans for CHD that function during acquisition, i.e. as the
scan is being performed. Previous work in this direction has been minimal, and
in particular the author knows of no previous work that has specifically focused
on automated analysis of fetal heart screening videos (see Chapter 2 for a more
detailed review of the literature).

There are conceptually many ways in which such tools could help, including:

• Automatically inferred information about the video stream could be displayed
visually to the sonographer to assist them in understanding the videos. For
example, important structures could be highlighted on the screen, or the most
probable view plane classification could be displayed. This could potentially
be useful for helping less experienced sonographers interpret the videos.

• Stored video footage from a scan could be tagged with automatically deter-
mined meta-data (for example label of different viewing planes), to enable
efficient review of the relevant parts of the footage at a later date.

• Automatically extracted information could be used for quality assurance, for
example in determining automatically whether the sonographer has acquired
all the required views in a particular session and spent sufficient time on each.
Comparing this information across multiple scans could allow hospitals and
healthcare providers to perform audits to identify potential weaknesses in
their screening programmes.

• An algorithm with full understanding of the cardiac anatomy could suggest
instructions on how to move the probe to reach the views of interest.

• These guidance routines could be used to move towards full automation of
scans using machine-actuated probes where appropriate.

• Automated processes could check for a wide range of abnormalities and may
be able to flag a potential problem that the human sonographer might have
missed. Ideally such a system could work without any user input and would
automatically determine when the relevant anatomy is visible and where in
the video it appears.
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A significant research effort would be needed to develop the above tools, and
this would extend far beyond the scope of the current thesis. However there are
important basic problems that are common to these tasks and must be solved before
progressing to solutions for the higher level tasks. Progress towards these goals
depends upon a basic level of interpretation of the ultrasound video stream and
its relation to the fetal heart anatomy in order to detect the different views of
the heart, and specific anatomical structures within those views. This low-level
interpretation of the video is the subject of this thesis, with the hope that it will
enable and inspire further work towards the goals listed above.

1.4.2 Technical Challenges

There are a number of technical challenges associated with automated interpretation
of ultrasound videos of the fetal heart. Figure 1.2 shows some examples of frames
from the experimental dataset used in this thesis (see §1.5 for more information)
and demonstrates some of these challenges. As described in §1.3.1 the indistinct
appearance of anatomical structures in ultrasound videos makes their interpretation
difficult for humans and computers alike. This is compounded by variations in
contrast and imaging parameters (compare for example Figures 1.2e and 1.2f), as well
as the presence of imaging artefacts such as speckle, shadowing and enhancement.
Shadowing artefacts are especially problematic as they can result in dark areas of
the image that could be mistaken for cardiac structures (e.g. the shadows in the
left hand side of Figure 1.2c), or obscure large regions of the image (Figure 1.2d).

In fetal cardiac videos (unlike adult echocardiography), the heart may take up
only a small fraction of the ultrasound field of view. Moreover, its location in the
image can change due to motion of the probe and/or the fetus during scanning.
The orientation of the fetus relative to the direction of the propagation of sound
depends on the fetal lie and the probe position, which are unknown and variable
during the scan. As a result, the orientation of the heart in the video varies between
and within videos (compare, for example, the four chamber views in Figures 1.2a
and 1.2g), which poses a particular problem as many image analysis algorithms
are designed to work with objects in a particular orientation. Furthermore, a
given anatomical view can be obtained in two different mirror image versions by
rotating the probe by 180° about the probe’s axial direction, meaning there are two
mirror image possibilities of the anatomical geometry that should be considered.
This can be thought of as looking at the same cross section from above or from
below. The appearance and size of the fetal heart changes with gestational age,
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(a) Four chamber view (b) Left ventricular outflow view

(c) Three vessels view (d) Obscured view

(e) Three vessels view (f) Transitional view

(g) Four chamber view (h) Motion blur

Figure 1.2: Example frames from the dataset videos demonstrating the forms of variation
in appearance. See text for further details.
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and the size is also dependent on the magnification factor applied to the video
(though this is known to the probe hardware).

The appearance of the heart within a given video changes significantly throughout
the cardiac cycle. Additionally, the appearance of the heart is very dependent on
the exact location of the probe, as nearby cross-sectional planes can appear very
differently even within one standard view of the heart.

Unless the probe is fitted with some sort of position sensor1, the motion of the
probe in the sonographer’s hand is unpredictable, but certain reasonable assumptions
(such as likely speeds) can be made. This comprises both deliberate motion, for
example moving between different views, and small involuntary motions. The
mother may make small, unpredictable motions during the scan, and potentially
quite large, sudden fetal movements may also be observed.

When working on unedited data from real scanning sessions there will be many
frames that are not relevant to the task at hand or are not useful due to being too
difficult to interpret. This may include frames that do not include the fetal heart
at all, or that do not match any of the views of the heart described in §1.4.4. For
example, the image in Figure 1.2f is captured during a transition between the three
vessels and left ventricular outflow tract view. Other frames will be very difficult to
interpret due to artefacts or motion. To work well in practice an algorithm must
either explicitly or implicitly determine which frames provide useful information
for the problem at hand and which do not and should be ignored.

A further important consideration is computational efficiency. Ideally any
proposed solution should be able to run quickly enough that it could provide real-
time feedback to the sonographer when running on relatively modest computing
hardware as found in most ultrasound devices. Portable probes would have even
more limited computational resources.

The work in this thesis aims to overcome many of these challenges to enable
the creation of systems that could operate reliably in a clinical setting.

1.4.3 Problem Definition

Considering the technical challenges outlined in the previous section, a set of global
variables was chosen that characterises each video frame (the term global is used
to distinguish these variables for the entire heart from those specific to individual
cardiac structures). This set of variables shall be referred to as the global state in
line with the systems and control literature and shall be denoted by st at time-step

1Incorporating such a sensor would certainly be an interesting and worthwhile research direction,
however it was not possible in this work due to equipment limitations.
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t ∈ N0 (corresponding to the frame number in the video). The chosen state consists
of the heart’s visibility, its centre in the image, its orientation in the image, the
view of the heart being observed, the cardiac phase (point in the cardiac cycle), and
the cardiac phase rate (heart rate). This characterisation was chosen with the aims
of §1.4.1 in mind, i.e. to provide information that could be useful for purposes such
as quality assurance and live feedback, and also provide a global coordinate system
for higher-level automated processes, such as the diagnosis of specific heart defects.

The hidden/visible state variable, ht ∈ {0, 1} is a binary variable that indicates
whether something close to one of the standard views of the heart is visible
(represented by a value of 0) or not, in which case the heart is considered to
be hidden (a value of 1).

The categorical view state variable vt ∈ {4C,LVOT, 3V} indicates which of the
three views is currently visible (see §1.4.4 for a definition of these).

The position of the heart centre, xt ∈ R2, in the image is measured in pixels
from the top left of the image and the orientation, θt ∈ [0, 2π), of the heart in the
image is measured in radians anticlockwise from the image x-axis. xt and θt have
different definitions in each of the viewing planes, see §1.4.4 for details.

The progress of the cardiac cycle is tracked using a second-order model, which
reflects the fact that the fetal heart rate is likely to remain fairly constant throughout
the video. The cardiac phase variable φt ∈ [0, 2π) tracks the progress of the cardiac
cycle as a circular (wrapped) variable in radians. A value of 0 corresponds to
end-diastole and a value of π corresponds to end-systole, as shown in Figure 1.3.
The cardiac phase rate variable, φ̇t is the rate of change of the cardiac phase variable
with respect to time, in radians per second.

These six state variables collectively form the state tuple, which is a collection
of variables with heterogeneous data types (binary, discrete, real and circular):

st =
(
ht, vt,xt, θt, φt, φ̇t

)
(1.1)

The first aim of this thesis is to estimate the value of these state variables from
the video data in an ‘online’ setting, i.e. without access to future video frames, in a
manner that is robust to the issues outlined in §1.4.2 and at speeds fast enough
to operate on the video as it is captured.

The second aim is to estimate the image locations of a number of anatomical
structures of interest. The anatomical structures chosen for this purpose are defined
later in §8.1. However, the specific choices of points to track are less important here
than the principles behind the method, which could be applied to any anatomical
structure of interest for a certain diagnosis.
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Figure 1.3: Definition of the cardiac phase variable, φ. A value of 0 represents end-
diastole, a value of π represents end-systole and other values represent other stages of
diastole and systole. The example shown is taken from a four-chamber view of the fetal
heart.

Three assumptions are made about the videos for the proof-of-concept algorithm
described in this thesis. Firstly, all data have been captured in just one of the two
possible mirror-image arrangements, corresponding to the case where if the axis
of the heart (from base to apex) points to the top of the image, the anatomical
left appears on the left of the image and the anatomical right appears on the right
of the image. Equivalently, this is the case where the cross-section created by
the imaging plane is viewed along the direction from the fetal head to the fetal
legs (i.e. looking at the cross-section from above, according the fetus’s frame of
reference, rather than from below). In this thesis this will be referred to as the ‘flip
convention’. In practice, both are seen commonly and sonographers’ scanning habits
vary. Accounting explicitly for different flip conventions would be a relatively minor
extension to the presented work, but was not considered in this thesis in order to
simplify the problem and concentrate on the more challenging technical issues.

Secondly, the assumption is made that the approximate size of the heart in
the video is known at test time and does not change due to magnification changes
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during the course of a video. In practice this is not an unreasonable assumption
because the heart size is fairly predictable at a known gestational age, and this
is typically recorded at the start of a scanning session as a matter of routine for
comparison with growth charts during the biometry parts of the mid-trimester scan.
Furthermore, the magnification applied to the video will be known to the ultrasound
device software. Even when the gestational age and image magnification are known,
small natural variations in heart size still occur between patients, but the learning
algorithms employed in this thesis should be sufficiently robust to these.

Thirdly, only scans of healthy hearts (with no abnormalities) are considered in
this thesis. Whilst an algorithm would need to be robust to the presence of defects
in order to be useful in practice, this is a challenging task due to the wide variety
of abnormalities that can occur. Consequently, a large amount of abnormal video
data would be required to train and validate such models. This thesis therefore
concentrates on a proof-of-concept that is validated on healthy subjects, and working
with abnormal subjects is left for future work and is discussed further in Chapter 10.

1.4.4 Definition of Fetal Heart Views

The ISUOG guidelines for cardiac screening [3] suggest a total of five axial views of
the cardiac heart: the four-chamber view, the left ventricular outflow tract view, the
right ventricular outflow tract view, the three vessels view, and the three vessels and
trachea view. These can be found in sequence by locating the four-chamber view
and then tilting the probe in a cephalad direction (towards the fetal head). Further
views are defined for specific diagnostic purposes, such as sagittal views of the aortic
arch, but these are not generally recommended for routine screening scans.

The right ventricular outflow tract view, the three vessel view, and the three
vessels and trachea view are all quite similar in composition. Each contains the
pulmonary artery, the aorta, and the superior vena cava. Due to the availability
of data, in this thesis these three views are considered to belong to a single view,
which is referred to as the three vessels view. Consequently this thesis presents a
proof-of-concept validation using a three-view classification that could trivially be
extended to the full five-view classification given a suitable annotated dataset.

Figure 1.4 shows the definitions of these three views used throughout this thesis.
The definition of each view consists of definitions of the heart centre and orientation
that will be tracked by the algorithm. The four chamber (4C) view contains all
four chambers (left and right atria and ventricles), with the centre at the crux.
The orientation is defined by the orientation of the interventricular septum. The
radius is defined in this view as that which encompasses both atria. The left
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Figure 1.4: Definition of fetal heart scanning views used in this thesis. In each case the
centre of the circle represents the heart centre variable, and the radial line represents
the orientation variable. The colour scheme in this figure (cyan 4C view, green LVOT
view, yellow 3V view) will be used throughout this thesis. Abbreviations used: LV/RV
left/right ventricle, LA/RA left/right atrium, (d)Ao (descending) aorta, PA pulmonary
artery, SVC superior vena cava, Tr trachea, Vb vertebra, Rb ribs.

ventricular (aortic) outflow tract (LVOT) view is defined by the presence of the
aorta leaving the left ventricle. The centre is defined by the centre of the aorta
where it crosses the interventricular septum and the orientation is again defined
by that of the interventricular septum. The three vessels view (3V) is defined
by the simultaneous presence of the pulmonary artery, aorta and superior vena
cava. The centre is defined as the centre of the pulmonary artery at the point
where it is in line with the other two vessels, and the orientation is defined by
that of the right wall of the pulmonary artery.

1.4.5 Overview of Proposed Solution and Contributions

The solution proposed in this thesis considers the task of estimating values for the
state variables at each frame as a Bayesian filtering problem that is solved using a
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particle filtering algorithm (Chapter 6). This provides a principled approach for using
a statistical model of the evolution of the state variables that takes measurements
in previous frames into account to produce estimates that are consistent between
the frames of the video. Within each frame, predictions are made using random
forests machine learning models to interpret the image (Chapter 4). To deal with
the problem of differing orientations, a method for extracting rotation-invariant
features from the images is considered as an alternative to more common features
based on rectangular image regions (Chapter 3).

The contributions of this thesis are as follows:

1. The application of rotation-invariant features (RIFs) to detect structures in
ultrasound imagery is considered (Chapter 3). An implementation of rotation
invariant features that allows them to be extracted by a random forests
algorithm far faster than previous implementations and enables processing
ultrasound data at tens of frames per second is introduced.

2. Novel adaptations of the random forests algorithm for predicting circular
output variables, such as cardiac phase, and for predicting image orientation
from rotation-invariant features are introduced (Chapter 4).

3. Partitioned particle filtering architectures are designed for the prediction
of the global state variables and the locations of the key structures in 2D
ultrasound videos of the fetal heart (Chapters 6 and 8).

4. An experimental evaluation of the above on an annotated clinical dataset is
performed, showing that the proposed method is able to estimate the global
variables and structure locations with accuracy comparable to inter- and
intra-observer variation at high frame rates (Chapters 5, 7 and 9).

1.5 Experimental Dataset

A diverse dataset of 91 short ultrasound videos of the fetal heart was gathered
as the results of a collaboration with Dr. Christos Ioannou of the fetal medicine
unit at John Radcliffe Hospital, Oxford. Obtaining suitable videos was challenging
because of time limtations within screening sessions, and the fact that longer
freehand videos (beyond two or three seconds) containing multiple views of the
heart are not stored as a matter of clincal routine. Storing such videos can be
quite disruptive to a clinical scanning session.
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The 91 videos are drawn from 12 subjects during routine clinical scans using a GE
Voluson E8 ultrasound device. No videos captured for the purpose of the study were
excluded from the dataset. The videos were captured using the probe’s video capture
function that records the screen exactly as it is presented to the sonographer after the
manufacturer’s on-board signal processing has been applied (such as demodulation
and time-gain compensation). The videos were then cropped spatially to remove
all the peripheral information added by the scanner and leave just the ultrasound
image itself, with dimensions of approximately 510× 430 pixels (±5 pixels).

Each video had a length of between 2 and 10 seconds and a frame rate between 25
and 76 frames per second (giving several hundred frames per video), and contained
one or more of the three views of the fetal heart defined in §1.4.4. The videos
captured the healthy fetal heart in a range of magnifications and orientations (see
Figure 1.2), though with the heart taking up approximately 30% or more of the
image (as per the scanning guidelines [3]) and without the magnification changing
within a given video. There was a range of gestational ages from 20 to 35 weeks.
All videos were gathered with the flip convention defined in §1.4.3 or were flipped
horizontally for consistency before being used for training and testing.

Each frame of each video was manually annotated by the author with a value for
each of the global state variables (except cardiac phase rate, φ̇t, which is inferred
from the labels for cardiac phase, φt) and the anatomical structures according to the
criteria in §1.4.3 and §1.4.4, which were devised in consultation with an experienced
clinician (Christos Ioannou). Additionally the approximate size of the heart is
also annotated on a per video basis. Annotations for the cardiac phase variables
were made by manually selecting each end-diastole and end-systole frame in the
video, and linearly interpolating the circular cardiac phase variable value between
these key frames. Furthermore, the locations of each structure of interest were also
annotated, see §8.1 for more details. The annotation process was performed using
custom software tools written by the author, which have been made freely available2.
This tool displays each frame to the user along with the annoation in a manner
similar to images in the lower row of Figure 1.4 and allows them to manipulate the
annotation with the keyboard until they are satisfied with it. The next image is
then displayed and initialised with the annotation from the previous image. There
are further keys used to manually mark the end-systole and endiastole frames.

These annotations are used to provide ground truth labels for training and
validating the models and were approved and corrected on a frame-by-frame basis

2http://github.com/CPBridge/heart_annotation_tool

http://github.com/CPBridge/heart_annotation_tool
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by a clinician experienced in interpreting ultrasound videos of the fetal heart
(Christos Ioannou).

The global manual annotations were performed a further two times for one
randomly-chosen video from each of the 12 subjects: once by the author again
approximately a year after the first set of annotations was completed, and once
by another student working on analysis of fetal heart ultrasound videos (Vaanathi
Sundaresan) independently in a separate session, but using the same software tool.
These two extra sets were used to provide estimates of the levels of intra-observer
and inter-observer variation, respectively, on the annotation task. Although previous
studies have attempted to estimate inter- and intra-observer variation in certain
tasks related to diagnosis or measurement from ultrasound imagery, the author is
not aware of any studies that could be meaningfully compared to these results.
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chapter (§2.1), key current trends within computer vision and machine learning will

be briefly described. Then §2.2 will discuss ways in which these techniques have

previously been applied to related problems within ultrasound image analysis.
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2.1 Relevant Advances In Computer Vision

Since the task of analysing fetal heart ultrasound videos has several facets, there
is a wide range of computer vision literature describing approaches to relevant
problems. Firstly, several approaches to object detection, one of the fundamental
processes within computer vision, will be discussed. Methods for object detection
can be broadly broken down into four categories: sliding windows classifiers (§2.1.1),
keypoints-based methods (§2.1.2), Hough voting methods (§2.1.3), and convolutional
neural networks (§2.1.4).

However, as discussed in Chapter 1, ultrasound imagery is difficult to interpret
but contains strong spatial and temporal constraints that can be utilised to
disambiguate the content of the video frames. This motivates a discussion of
methods of leveraging spatial (§2.1.5) and temporal (§2.1.6, §2.1.7) information
within images and videos later in this section.

2.1.1 Sliding Window Methods

The sliding window framework is one of the simplest and most popular paradigms
for object detection. It is based upon performing a binary classification in each
sub-image (‘window’) for the presence or absence of an object within that sub-image
using some set of features extracted from the sub-image. The same detector is
applied to a number of windows in an image with different locations and often
also at different scales.

Much of the work on sliding window classifiers in the early 2000s built on the
algorithm of Viola and Jones [21] for detecting faces. Their algorithm created
features using very simple ‘rectangle’ filters (also known as ‘Haar’ or ‘Haar-like’
filters), consisting of summed intensity values under rectangles with various spatial
arrangements. The crucial development in Viola and Jones’ work was selecting
these features with an Adaboost [22] learning methodology to create a cascade of
filters designed to reject many negative windows early on, meaning that the features
used in later stages only needed to be evaluated on a small number of locations in
the input image. The use of integral images also allowed the rectangle filter outputs
to be evaluated extremely quickly, and thus frame-rate detection was possible. The
disadvantage of the method is its long training time, as a large number of features
have to be evaluated using trial and error. As computing hardware has advanced,
however, this has become increasingly less important.

In a separate development, Dalal and Triggs [23] introduced Histogram of
Oriented Gradients (HOG) features for sliding window object detection. Firstly,
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the intensity gradient of the input image is found using standard methods. The
gradient vectors are then put into orientation bins according to their direction and
weighted by their magnitude. The gradient vectors are also put into spatial bins
(‘cells’) in different parts of the sub-image, which are then concatenated into ‘blocks’.
The blocks descriptors are then normalised to increase robustness to contrast before
being finally concatenated into a feature vector for classification. In the original
work, Dalal and Triggs made use of Support Vector Machines (SVMs) with a linear
kernel. The method has proved popular due to its robustness to changes of contrast,
absolute intensity level and the exact location of edges.

Various authors have since successfully used different variations and extensions
of orientated gradient histograms, for example Maji et al. [24] used histograms of
orientated edge energy (obtained using an orientated filter bank) combined into
blocks at various scales, and then used an efficient implementation of the histogram
intersection kernel SVM for improved performance over linear SVMs whilst avoiding
the slow test times normally associated with non-linear kernels.

Others have subsequently incorporated elements of the HOG feature extraction
method into cascade classifiers to increase flexibility and speed. Unlike Dalal
and Triggs’ formulation, in which the histogram blocks are rigidly defined, such
methods allowed blocks to take a variety of shapes and sizes, whilst using integral
histograms to retain high efficiency [25, 26]. Others have combined multiple cues,
for example Dollár et al. [27] and Benenson et al. [28] extended rectangular filters
to operate on (and indeed between) multiple feature channels (in their case edge
detectors, Gabor filters, colour channels and gradient orientation histograms),
whilst Wojek et al. [29] combined HOG, rectangle filters and orientated motion
histogram features using both Adaboost variants and linear SVM classifiers. Such
an approach can combine a large number of possible cues, for example edge,
texture, gradient, intensity and colour information (whilst obviously increasing
computational demand, particularly during training).

Some work has instead focused on the orthogonal task of altering the cascade ar-
chitecture to improve the speed and accuracy of detection. Bourdev and Brandt [30,
31] introduced Soft Cascades, in which each stage produced a real-valued rather than
binary-valued output and the result of each stage took into account the response of
previous stages. These improvements brought increased accuracy and allowed the
accuracy-speed trade-off to be controlled without retraining the classifier, as would be
necessary for a standard cascade. Speed improvements were achieved by introducing
fast approximations to multi-scale features [32] or conversely approximating the
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classifiers at multiple scales from classifiers trained at just a subset of scales [28], and
by allowing cascades to excite or inhibit those on neighbouring image regions [33].

Others [34] replaced the boosted learning method with the random forests
model [35–37], which uses an ensemble of binary decision trees trained with
randomised training procedures to classify patches as object or non-object.

The disadvantages of sliding window methods are their limited ability to model
objects with large shape variations including different sizes and orientations of
objects. Furthermore, they are inherently ‘local’ detectors, meaning that they do
not capture contextual information, which may be important in some contexts (or
a distracting in others). For further references and performance comparisons on
object detection as applied to pedestrian detection the interested reader is directed
to a recent review by Dollár et al. [38].

2.1.2 Keypoint Methods

Though sliding window methods were perhaps the most prolific in object detection
algorithms before the rise of deep learning methods, another common framework is
based on detecting and describing features at sparse keypoints. The general idea
is as follows: at training time interest points are detected using some standard
interest point detector (e.g. Harris [39], SIFT [40] or SURF [41]). The patches
around detected points are represented by a feature vector (e.g. using the SIFT
descriptor [42] or principal component analysis (PCA) on the patch intensity
values [43]). These descriptors are then used to create a ‘codebook’ of so-called visual
words. At test time, the keypoints are detected in the same way and matched to their
codebook entries using the descriptor. Then the histogram of codebook entries in
the image is taken as a descriptor of the image to be used for object detection. This
is often referred to as the ‘bag of visual words’ or the ‘bag of keypoints’ paradigm.

Because interest points will be detected at points all over the image, this
approach naturally lends itself to the categorisation of the entire image, rather than
the localised detection of objects within it (e.g. the work of Csurka et al. [44] and
Sivic et al. [45]). In many cases such models have ignored any prior knowledge
about the likely spatial arrangements of features, and do not provide an estimate
of the location or number of objects. However, many similar models do include
such reasoning into the model, for a discussion of these see §2.1.5.

Keypoint models have shown good performance for detecting objects that have
distinctive, reliably detected sets of keypoints even where there may be large intra-
class variation of overall shape; for example faces with eyes and nose, or cars with
corners, headlights and wheels etc. They can often handle partial occlusion as
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they do not require all the keypoints to trigger a detection. However, the nature
of ultrasound imagery means that there are a lack of obvious corners and other
distinctive isolated features. Keypoint based approaches are therefore unlikely to
be so successful for fetal heart ultrasound image analysis, as they depend upon
reliably detecting distinctive feature. This can potentially be overcome by densely
sampling interest points, though of course this increases the computation time
required and produces a lot of irrelevant information.

2.1.3 Hough Voting Methods

Inspired by the classical Hough transform [46] to detect lines and curves in an image,
the generalised Hough transform [47] is a method to detect arbitrary shapes by
accumulating votes for the location of the object in a “Hough” voting space when
all edge pixels vote for the location of the object centre. Gall et al. [48] proposed
Hough forests, in which the random forests algorithm ([35] see §4 for more details) is
used to determine whether an image patch belongs to an object and, if it is, its vote
for location of the centre of the object is determined using random forest regression.
Each patch in the image is passed into the random forest, and the votes from
the positively classified patches are accumulated in a Hough voting array. Simple
post-processing of the Hough array leads to the detection of one or more objects.

Several further methods based on Hough forests will be described in §2.1.5.

2.1.4 Convolutional Neural Networks

Over the past 3-5 years, and during the time that the work in this thesis was
being performed, the field of computer vision has been dominated by advances in
convolutional neural networks (CNNs) [49–53]. A CNN is formed of several stacked
layers of artificial neurons (often referred to as units). Like in general artificial
neural networks (ANNs) [54, 55], each unit takes as input the outputs of some or
all of the neurons in the previous layer, scales them according to a set of learned
weights, and passes the sum through some non-linear activation function to create
the output, which is passed on to the next layer. The defining characteristic of
convolutional neural networks is that each unit is connected to only those units in
the previous layer that correspond to a certain spatial area, and the input to the
first layer is directly connected to the raw image pixels. Furthermore, the learned
weight parameters are shared between corresponding neurons for different spatial
regions, and hence each layer can be considered to perform a convolution operation
(followed by the activation function) with a learned kernel on the previous layer.
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This both dramatically reduces the number of parameters to learn, relative to a
fully connected network (a network in which each unit is connected all units in the
previous layer), and provides a degree of translation invariance. Consequently, the
layers of the network learn increasingly abstract representations of the input image
whilst gradually aggregating information from larger and larger spatial areas.

This makes the representations used by CNNs far more flexible than “handcrafted”
representations (such as HOG), and allows the entire feature extraction process to be
optimised “end-to-end” for the particular task at hand, with no hard differentiation
made between the feature extraction process and the predictive model. Learning
the weights is performed using stochastic gradient descent, where the gradient of the
output cost function with respect to the weights may be found by back-propagating
from the output towards the inputs. Key current downsides of CNNs are that they
require a large amount amount of labelled training data, and are computationally
very intensive to train, meaning that highly-parallelised graphics processor units
(GPUs) are often required to train in a reasonable length of time.

Since their initial success, researchers have improved the performance of CNNs
by exploring different architectures (arrangements of layers) [51–53] and other tricks
to improve the training process such as different activation functions [56], random
dropout of connections during training to reduce overfitting [57], and transfering
features from pre-trained models [58]. Whilst CNNs are well suited to image level
classification, alterations must be made to allow location of objects within the image.
The region CNN (R-CNN) architecture [59] and its variants [60, 61] propose regions
of interest within images and then feed warped versions of these into a CNN for
classification of the presence and class of object. CNNs have also been successfully
applied to other problems such as segmentation [62] and regression (see §2.1.5).

2.1.5 Spatial Models and Pose Estimation

The requirement to simultaneously predict the locations of several structures with
interdependent locations motivates a review of how spatial models have previously
been applied to predicting multiple landmarks in images. In the computer vision
literature, the majority of work in this direction has been conducted in two contexts:
human pose estimation, and facial landmark localisation. Additionally (and with
notable exceptions) most of the approaches for these two tasks have been focused
on three key algorithms: constellation models, pictorial structures model, and the
random Hough forest model. Each of these is reviewed below.

Constellation models [43, 63–66] are one especially popular class of model. They
are generative models for objects that factor the likelihood into terms involving
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part appearance, layout/shape and sometimes scale. First, potential parts are
detected at interest points, and represented through vector quantisation of some
descriptor (either with PCA on the image intensity [43, 63] or gradient [64], or
k-means clustering [65] on patches). Then possible hypotheses of part identity are
evaluated using a layout model, which in earlier work was jointly Gaussian [43,
63, 65], but later work switched to a star-structured graphical model for reasons
of computational efficiency [64]. Crandall et al. used graphical models with more
complicated structures that are still simpler than a joint Gaussian (essentially
using multiple root nodes), but found that the increase in performance is small at
the expense of increased computation [66]. An advantage of these models is that
they can work in a semi-supervised or unsupervised setting using the expectation-
maximisation (EM) algorithm [65] or the more involved latent semantic analysis [45].
However, this is not a relevant advantage for the application in this thesis as there
is expert-annotated training data to learn from. Furthermore, the focus is on using
parts as a means of robustly locating objects, rather than having accurate part
locations as an end in itself, and the performance depends on a reliable interest
point detection stage, which is particularly difficult in ultrasound.

Following earlier work by Fischler and Elschlager [67], Felzenszwalb and Hutten-
locher [68] introduced a general framework for part-based models called pictorial
structures. The basis of the method is an undirected graphical model, where the
(discrete-valued) locations of each part are modelled as nodes in a star-structured
graph. An energy function is defined on this graph in terms of two factors: the local
appearance at each node (node potentials) and the spatial relationships between
the locations of connected pairs of nodes (edge potentials). This is fundamentally
different from the constellation approach, where an unknown number of parts are
first detected and used to reason about the presence of an object; by contrast in a
pictorial structure the part identities are known a priori and the model is used to
reason about their positions before deciding upon the presence of the whole object.
The key contribution of Felzenszwalb and Huttenlocher [68] was to note that if
the structure of the graphical model is a tree (i.e. contains no cycles) and the edge
potentials have a Gaussian form, then the globally optimal match of the locations to
the image can be found efficiently using a form of dynamic programming based on
min-convolutions. In later work [26], Felzenszwalb et al. demonstrated an effective
implementation (the deformable parts model) using HOG-like features as a local
appearance model and simple quadratic penalty terms for the locations of parts
relative to the root node, and improved efficiency using a cascade architecture in
order to avoid evaluating unnecessary node appearance functions [69].
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Following this work, a number of authors have made successful instantiations
of the general pictorial structures framework [70, 71]. Yang and Ramanan [70]
generalised the deformable parts model for human pose estimation by using mixture
models of appearance for each part, in order to model for example, an open or
closed fist, or a face from different viewpoints. Zhu and Ramanan [71] used a similar
formulation for facial landmark detection, with a mixture of different tree structures
with shared parts to model the face from different angles. This approach therefore
allows the spatial relationships between the parts to be image dependent.

Hough forests (§2.1.3) have proved a very popular method for landmark detection
and pose estimation [72–79]. In these methods, each image patch votes for the
locations of multiple parts. Thus, while the spatial relationships between the
different parts are not explicitly modelled, they arise implicitly as a consequence of
the learned voting patterns. Consequently, there is no need to manually specify a
graphical model and construct local part detectors. This approach is very flexible
and works well in practice, as well as being very computationally efficient. Another
key advantage is that since any informative patch in the image can vote for the
landmark locations, the contextual information captured by the model is not limited
to the locations of the specified landmarks as it is in models with local detectors.

Several authors have developed this idea in order to make the technique applicable
in a wider variety of situations by conditioning the Hough forests on some global
or latent variable, for example face/torso orientation or size. This latent variable
can be estimated either by the forest itself [77–79] or as a pre-processing step [74],
and can operate by either selecting a subset of trees in the forest to vote [74, 78],
influencing the values of the votes from each tree [78], or weighting the votes [77]
according to the value of the latent variable.

Others have tried to enforce some spatial consistency amongst the landmark
positions. Yang et al. [75] ‘sieved’ votes using a latent variable – only patches which
give consistent votes for the face centre are allowed to vote for the position of the
specific facial landmarks. Jia et al. [76] instead enforced spatial consistency of the
face/non-face labels (that allow or inhibit voting for landmark positions) by using a
structured output space that predicts the labels of a patch of pixels together.

Dantone [80] combined the Hough forest method with the pictorial structures
model by using the Hough forest output to provide the node potential for the
pictorial structures model, thus gaining the advantages of both methods to perform
the challenging task of human pose estimation from single images. Furthermore,
they build context directly into the Hough forest model by using a two stage model,
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where the second stage can use the intermediate output of the first. This allows the
model to overcome certain ambiguities such as distinguishing the left and right legs.

Recently, there has been some success applying deep learning techniques to
human pose detection [81–84], facial landmark detection [85], and hand pose
detection [86]. This is achieved by altering the cost function of a CNN to simulta-
neously predict the locations of joints or landmarks of interest. Thus, the spatial
connections between the different objects are not explicitly modelled, but rather
implicitly encoded in the higher level features of the network. Typically however,
due to the global nature of the high level features, the accuracy of this regression is
not that high, and it is necessary to use further, local networks – operating at a
higher image resolution on a small image patch – to refine the prediction from the
initial network [81, 85]. Oberweger et al. [86] showed that it was advantageous to
explicitly force the network to form a low-dimensional representation of the pose
space, and thereby capture the spatial constraints between the different landmarks,
by using a “bottleneck” layer, with a lower dimension than the output layer, before
the output layer. Newell, Yang and Deng [83] expanded on this idea by creating
hourglass networks that can be thought of as creating several stacked bottlenecks
that allows the network that alternate several times between performing inference
at the global and local levels, leading to several sets of predictions that are refined
through the network. An alternative method for refining and combining pose
estimates for the different landmarks is to use a recurrent layer (see §2.1.7) at
the end of the network [84]. Gkioxari et al. [82] showed that a pose estimator
could be trained alongside a person detector and an action classifier within the
same network using multiple loss functions.

2.1.6 Video Analysis

Relevant literature on video analysis can broadly be divided into two groups. The
first group is interested in modelling the evolution of the video frames themselves over
time in order to identify sequences with certain dynamics. The second models the
evolution of some underlying variables of interest over time, rather than the image
pixels themselves, in order to infer the values of the variables from an image sequence.

A number of authors have proposed modelling the progression of a video sequence
as the output of a linear dynamical system (LDS) [87–89], creating the dynamic
texture (DT) model. This model, introduced by Doretto et al. [87], assumes that
there is a hidden, low-dimensional state representation of the video, which evolves
over time according to a linear update rule with random perturbations. The
observed frame at each timestep is assumed to be related to this hidden state
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vector at that timestep by a second linear transformation (plus random noise).
Given a video sequence, the parameters of the dynamic texture model may be
fitted (sub-optimally) using a method based on the singular value decomposition
(SVD). As well as providing a generative model for synthesising further similar
video sequences, the model parameters from a given sequence my be compared to
the parameters from other sequences to provide a way to compare video sequences,
cluster similar sequences, and build nearest-neighbour or kernel-based classifiers.

Chan and Vasconcelos [88] extended the DT framework by allowing the frame
pixels to be related to the state vector by a more general non-linear mapping learnt
using kernel principal component analysis (PCA), giving the kernel dynamic texture
(KDT) model. They then used the Martin distance between two sets of model
parameters to model to construct classifiers based on nearest-neighbour or support
vector machines (SVMs), and were able to classify different “video textures” such as
moving water, flickering fire, and swaying foliage. A further notable development on
this was due to Chaudhry et al. [89], who modelled the evolution of oriented optical
flow histograms from the frames rather than the raw pixels themselves through the
use of special kernels. With this approach, they were able to classify sequences
of human motion according to the action being performed.

Like the work in this thesis, the dynamic texture and kernel dynamic texture
models relate the evolution of the video frames to an underlying state space
representation. However the emphasis in these models is on learning any low-
dimensional representation that best explains the observed data, rather than a
representation that is useful for any other purpose. Consequently, no particular
physical meaning can be ascribed to the value of the state vector at any given time.
By contrast the aim in this thesis is to track a state vector consisting of specified
variables of interest (position, orientation, view plane etc.), and learn how to infer
this information from the observed video data. The DT and KDT models are also
computationally demanding and operate on full sequences of video at once, meaning
that they are not well-suited to real time video processing applications.

Another important goal within video analysis is tracking of objects of interest.
There are a wide variety of tracking algorithms with a number of different approaches
to the task of representing the object, extracting image features, and modelling
object dynamics [90], and it is beyond the scope of this thesis to survey them all.
Broadly speaking there is a spectrum between tracking and detection [91], where the
former has a purely local appearance model and therefore finds similar patches in
nearby frames (for example using mean-shift [92] or registration type approaches [93])
and the latter where there is a more general appearance model for the whole object
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class. Typically pure tracking approaches require a manually specified initialisation,
and are therefore not well-suited to building fully automated tools. The reader is
referred to the survey of Yilmaz et al. [90] for a comprehensive discussion.

A number of detection-based tracking algorithms adopt a probabilistic approach
in which a probabilistic estimate of the object location is updated over time using
a recursive Bayesian filter, which is a very general framework for probabilistic
tracking of a dynamic system including as special cases the Kalman filter and the
particle filter [94]. This is also suitable for tracking high dimensional descriptions
of objects such as the object boundary [94]. More detail of the theory of recursive
Bayesian filters is found in Chapter 6.

The problem of tracking/detecting multiple structures with both temporal and
spatial constraints is considerably more challenging. Whilst graphical models such
as recursive Bayesian filters and pictorial structures are popular for incorporating
either spatial or temporal constraints, connecting different structures in both space
and time creates graphical structures containing cycles. This makes exact inference
impossible. Approximate inference may be performed with particle-based methods
such as particle message passing [95] and non-parametric belief propagation [96],
however these are very slow due to the need to multiply probability distributions
represented by particle sets.

Sigal [97, 98] and Sudderth [99] used this approach to track human motion and
hand motion respectively, defined in both cases by landmark points. Both were
able to achieve high quality tracking by fully exploiting both sets of constraints,
however in both cases the running time was extremely slow at several minutes per
frame, making such models entirely unsuitable for real time applications.

2.1.7 Recurrent Neural Networks

Recurrent neural networks (RNNs) are artificial neural networks in which connections
between the units can form cycles such that the hidden states become time-
dependent [100]. This is useful when analysing sequential data (such as natural
language or video data [101]) as it allows the network to analyse sequences of
arbitrary length while retaining ‘memories’ of previous inputs. At the time of
writing, the application of RNNs to video data is in its infancy, but there is promise
for substantial progress in this area over the coming years.

Notable early work in this direction includes that of Fragkiadaki et al. [102],
who used an Encoder-Recurrent-Decoder (ERD) architecture to estimate human
pose from an input video. This architecture uses a CNN to create a high-level,
low-dimensional representation of each frame (the Encoder part). This is then used
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as the input to an RNN (the Recurrent part), which learns the dynamics of human
movement in this high-level space. Finally, there is a further fully-connected neural
network model (the Decoder part) that transforms the recurrent representation
into the output of interest (in this case joint locations). As well as being highly
flexible and possessing considerable representational power, the model has the
crucial advantage of being fully end-to-end trainable for the required task.

Another promising application of RNNs is for tracking a complex state. For
example, Ondrúška and Posner [103] train an RNN to track multiple objects in
a cluttered scene using incomplete sensor measurements.

Future work following on from this thesis could consider the use of RNN
based methods.

2.2 Ultrasound Image Analysis

2.2.1 Structure Detection in Fetal Ultrasound Imagery

There has been some previous success in applying techniques from the broader
object detection literature to the domain of ultrasound imaging. Most of these are
variations on the rectangular filters and Adaboost cascade methodology of Viola
and Jones [21]. For example, Rahmatullah et al. [104, 105] used rectangular features
with Adaboost to detect abdominal landmarks in still images, and detect standard
planes in volumetric ultrasound data, achieving reasonable accuracy in both tasks.
However, their method was slow because they did not make use of the cascade
detector architecture. In later work, they added an earlier stage that used a feature
symmetry map [106] and connected component analysis to detect a shortlist of
likely locations for the anatomical landmarks [107]. In this way the detector could
be made more efficient. Georgescu et al. [108] and Karavides et al. [109] made use
of 2D and 3D rectangular (cuboid) filters respectively in detecting and segmenting
ventricles in ultrasound images/volumes of the adult heart, while Zhou et al. [110]
used 2D rectangular features for classification of echocardiographic views.

Carneiro et al. [111, 112] also made use of Viola and Jones’ rectangular filters
to train detectors for a number of different anatomical structures. They used Tu’s
Probabilistic Boosting Tree (PBT) architecture [113], which can be considered a
generalisation of the cascade architecture in which each node in a decision tree
contains a strong classifier trained with Adaboost. Their model was later adopted
by a number of other works on ultrasound detection by the same group [114–117].
This architecture is no longer focused on early rejection of a large number of false
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negatives, but, like the more general decision tree framework, allows a more natural
extension to multi-class classification problems.

Namburete et al. [118] found that improved results can be obtained by first
transforming the input image to statistical images to reduce the effect of speckle
artefacts. This was done by modelling the intensity distributions of speckle using a
Nakagami distribution [119, 120]. Each pixel was replaced by either the shape or
scale parameter of the Nakagami probability distribution fitted to the pixel intensities
in a window centred on the original pixel. Using rectangular features and an
Adaboost detector framework on these statistical images, they achieved good results
for the task of detecting the choroid plexus in 2D ultrasound images of the fetal brain.

More recently, the random forests algorithm [35, 36] has also proved very effective
in constructing features in ultrasound images. Ni et al. [121] used random forests
with rectangular features for detection of structures in the fetal abdomen. Yaqub
et al. [122] also used random forests with rectangular features to locate and classify
a range of anatomical structures within fetal ultrasound images. Their method first
proposes regions using the normalised cross-correlation measure between the image
and a template to propose regions that might contain structures, which are then
passed to the random forest for classification. Random forests have also been used
for many segmentation-based detection methods for fetal brain structures [123],
fetal femurs [124], or the myocardium in adult echocardiography [125].

Despite the potentially limited applicability of interest point detectors to
ultrasound, keypoint approaches have been successfully been used in ultrasound for
detection of structures at the whole image level. Maraci et al [126, 127] detected
images containing different fetal structures by calculated dense SIFT descriptors
from the image and aggregating them in the bag-of-visual-words (BoVW) [126]
or Fisher Vector [127] encodings for classification.

2.2.2 Spatial Models in Ultrasound Images

Some previous work has attempted to leverage spatial context information to aid
detection in ultrasound imagery [112, 114–117, 121, 128].

Some authors have hand-crafted contextual rules to govern the relative positions
of structures. Kumar et al. [128] detect the fetal abdomen, spine and stomach in that
order using hand-specified rules about their relative placement, whereas Ni et al. [121]
detect the umbilical vein, spine, and stomach bubble by constraining them to be in
certain radial segments of the fetal abdomen. Whilst these approaches might work in
simple cases, it is not always practical (much less optimal) to hand-specify such rules.
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Carneiro et al. [112] incorporated context into their detection system by sequen-
tially detecting different structures and using the location of the previous structures
to limit the search space of the detectors for subsequent structures. This was able
to increase the efficiency of detections. Sofka et al. [114] took this further in their
hierarchical detection network, which detects the locations of a set list of objects in
2D and 3D images sequentially, using the locations of previously detected objects
to inform the detection of further objects. The inference required is intractable
and so Monte Carlo methods were used, as adapted from sequential estimation
techniques in the tracking literature. In this case, the sequence was that of detection
of objects in a single image rather than the detection of the same object in a
sequence of images as is found in tracking algorithms. For each object there was
therefore a prediction step (based on one previously detected object’s location)
and an update step (based on observations from a PBT classifier [111]). They
used a greedy method to choose the best selection order for the different objects
based on training data. The authors of these works and their collaborators have
successfully demonstrated the usefulness of the approach for detection of landmarks
in 2D ultrasound images of the adult heart [114], detection of structures in 3D
images of the fetal brain [114–116], and the detection of the nuchal translucency in
fetal images [117]. This algorithm is designed to work with sets of features that are
known to all be present in the image in question, and as such they would need to
be generalised to be applicable to more general problems of images with unknown
content. Furthermore, using sequential detection is always vulnerable to a bad
detection early in the process, unlike methods based on inference on a graph.

2.2.3 View Detection in Fetal and Adult Echocardiography

While there is little previous literature on view detection in fetal heart images, the
problem of view detection in adult echocardiography is better studied. However,
there are a number of differences between adult and fetal cardiac imagery. The
small size of the heart during the second trimester, and the need to scan through
the mother’s abdomen means that the image quality in fetal scans is typically
considerably worse than in adult chocardiography. Furthermore, the position of
the fetus within the uterus is unknown and variable during scanning, meaning
that it is more difficult to locate the standard scanning planes. Consequently,
the layout of the images, including the size, location and orientation of the heart
within the image, can vary signignificantly between fetal cardiac scans, in contrast
to adult scans in which these things are relatively consistent. Furthermore, the
list of views typically used in fetal cardiac scanning is typically different from the
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standard views used in adult echocardiography. This is both because certain views
are difficult to obtain in utero, and because fetal scans are typically screening
for a broader range of potential anomalies.

Several approaches to view detection in adult echocardiography make use of
global image properties in order to deduce the view label. For example, Agarwal
et al. [129] use a histogram of oriented gradients (HOG) descriptor on the whole
image, broken into four non-overlapping blocks. This can distinguish between two
very different views (long axis and short axis) with a support vector machine (SVM)
classifier. Wu et al. [130] employ a similar method, using ‘GIST’ descriptors [131]
in 16 image blocks instead of HOG descriptors. Zhou et al. [110] use a multi-
class classifier based on LogitBoost and rectangular filters (‘Haar-like’ filters) in
order to distinguish between apical two-chamber and four-chamber views. Such
global methods are not well-suited to fetal echocardiography because they assume
a relatively consistent layout of frames, but in fetal imagery the position and
orientation of the heart is unknown. Also, in the application in this thesis, only
small areas of the fetal images are relevant to view classification, and the rest of
the image is taken up by the fetal abdomen and the womb.

This is overcome, to some extent, in the work of Park et al. [132], which builds
on the work of Zhou et al. [110] by adding a left ventricle detection stage, which
is then used to position the multi-class view classifier in the image. However, this
relies upon the appearance of the left ventricle being fairly consistent between views,
and there is unfortunately no such guarantee of consistency in the fetal views of
interest to us. Furthermore, although it solves the problem of unknown position
it does not solve the problem of unknown orientation.

Other methods rely on first detecting keypoints in the frame. Qian et al. [133]
detect space-time interest points in the video stream and describe them using a 3D
scale-invariant feature transform (SIFT) descriptor (in the two spatial dimensions
plus time). Similarly, Kumar et al. [134] detect interest points using the SIFT
keypoint detector in the motion magnitude image, and describe them using local
histograms of motion magnitude and intensity. In both cases, the extracted
descriptors are quantised according to a pre-trained codebook, and an SVM classifier
is used on the codebook histogram for classification. Such approaches are also
unlikely to be effective in fetal imagery for the same reasons as the global methods.
It is also difficult to estimate other information such as position, orientation and
cardiac phase information from the frames using this approach.

Ebadollahi et al. [135] first use the grey-scale symmetric axis transform (GSAT)
to detect the “blobs” that are potential heart chambers. They then connect them
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in a Markov Random Field (MRF) graph structure in order to label the chambers
and hence deduce the view label. This approach depends on reliable detection
of chambers, and the results showed that accuracy dropped dramatically when
chamber detection was not reliable, as is likely to be the case in fetal imaging
where structures other than the heart are visible.

A semi-automatic system detecting viewing planes in volumetric fetal heart
videos has been demonstrated by Yeo and Romero [136]. This system takes a
very different approach to this thesis by working as a post-processing step on
volumetric imagery. The user must manually locate seven anatomical points in
the 3D image, which is time-consuming and subjective. The system then infers
the location of 9 diagnostic planes of interest within the volume, and provides
a visualisation assistance tool to view these with small displacements to allow
users to look for potential anomalies.

2.2.4 Ultrasound Video Analysis

Despite the inherently temporal nature of 2D ultrasound acquisition, application of
video analysis techniques to ultrasound videos in the literature is limited to a
small number of cases.

There has been some success using the kernel dynamic textures (KDT) group of
models for detecting structures in ultrasound [137–140] in a way that takes both
the image appearance and local video dynamics into account. Kwitt et al. [137,
138] used KDT models based to model the evolution of either raw pixel intensities
or bag-of-words histograms through the video sequence. The model parameters
were found for each short video sequence within a temporal sliding window, and
these were used within a classification framework to determine which temporal
window contained the structure of interest. However, they only validated their
model on a phantom study, not real-world clinical data.

Maraci et al. [139] developed a similar approach in parallel and applied it to
real world ultrasound datasets in order to detect when the fetal head appeared with
a fetal scanning video. They performed some image pre-processing using feature
symmetry [106, 141] to pick out the structures of interest in the video frames, and
used an improved kernel (the Binet-Cauchy kernel) for the classification stage. In
later work [140] (to which the author of this thesis contributed), this approach
was applied to detecting the fetal heartbeat to ascertain fetal viability in a binary
classifcation. In this latter application, the advantage of considering the temporal
dynamics is clear. Whilst these models provide an elegant way to make use of
temporal dynamics, they are able to locate structures in time only, not in space.
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In principle they could be applied to different windows in both time and space in
order to give spatial localisation, however this would be prohibitively slow.

2.2.5 Boundary Tracking in Adult Echocardiography

Another area of related work is automatic boundary tracking in (adult) echocardio-
graphy using 2D [142–144] or 3D [145, 146] video data. Like the work in this thesis,
these algorithms track a high-dimensional representation of the heart as it evolves
through video frames, and they tend to use a strong temporal prior model in order
to provide robustness to ambiguous image information. For example, in early work
Jacob et al. [142] used a Kalman filter to model the evolution of the left ventricular
boundary. Nascimento and Marques [143] built on this with multiple predictive
models and robust data association to eliminate erroneous boundary candidates.
Carneiro and Nascimento [144] track points on the left ventricle endocardium using
a robust particle filtering framework that couples a linear transition model (in fact
one model for diastole and another for systole) with an observation model built with
deep neural networks. Such techniques are also applicable for the higher dimensional
problem of 3D boundary tracking, such as the work of Yang et al. [145], which uses a
prediction model based on manifold learning of left ventricle boundary trajectories,
and combines it with an observation model using probabilistic boosting trees.

Whilst the methodologies in these papers are related to those used in this thesis,
their aims are somewhat different as they specifically aim to track the ventricle
boundary, and assume carefully captured data that reliably contains the boundary
of interest and in which there are no changes in viewing plane or significant changes
in heart location. By contrast the aim of this thesis is to provide a more broadly
applicable set of measurements and descriptions of fetal heart scans, that could
provide useful information in less constrained scanning sessions.

2.2.6 Speckle Tracking

Speckle tracking [147–149] is a technique used to produce accurate estimates of tissue
strain and motion in echocardiography. The underlying principle is that the speckle
patterns produced by soft tissues in ultrasound images remain relatively stable as
the tissue deforms. Therefore the speckle pattern can be used as a ‘fingerprint’ that
can be used to track an anatomical point as the tissue deforms over the cardiac
cycle. Tracking is typically performed using a patch-based correlation technique
using the sum-of-absolute-differences [147, 148] to quantify the similarity between
patches in consecutive frames. Tracking a number of points in this way can be used
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to characterise heart function by deriving quantities such as rotation, twist and
torsional gradient [149] and thereby assess cardiac abnormalities.

Although speckle tracking has mostly been used in adult echocardiography, it
has also proved a useful tool in fetal imaging [150]. However its applicability to this
thesis is limited as it requires a well-constrained and high-quality video stream on
which to operate, i.e. one with minimal out-of-plane motion and with a number
of pre-defined points (manually or semi-automatically) of interest to track. The
level of detail it provides is also not necessary for the basic assessment that is
attempted in this thesis, but it is likely to have a role in further developments
towards automated CHD detection.

2.2.7 Deep Learning in Ultrasound Images

Recently, researchers working on ultrasound image analysis have adopted deep
learning approaches from the wider computer vision community. Chen et al. [151]
use a deep architecture that combines a spatial convolutional neural network and
a temporal recurrent neural network (similar to the Encoder-Recurrent-Decoder
architecture §2.1.7) to make use of temporal context features for standard viewing
plane detection in fetal ultrasound videos, including the four chamber view of the
heart as one of the three views considered (alongside the abdominal standard plane
and the facial standard plane). Unfortunately, this approach requires a large amount
of labelled training data, which is considerably harder to come by in the case of
medical ultrasound then in many of the image classification tasks addressed by
computer vision researchers. Gao et al. [152] have recently demonstrated that the
data requirements for using deep networks with fetal ultrasound can be reduced
by using transfer learning [58] from models trained on natural images. Though
both of these papers perform view detection in fetal ultrasound video, neither deal
specifically with the fetal heart or attempt to extract other useful information
such as cardiac phase, position or orientation.

Baumgartner et al. [153, 154] also used CNNs to detect various anatomical
structures in fetal ultrasound videos, including four heart views. Their method used
a fully convolutional network [62] to simultaneously localise structures in the image
and label them. Although, like in this thesis, they are explicitly aiming for real-time
detection at high frame rate from video, they do not use any temporal constraints
or information in their model. Their results show that the different heart views are
the hardest to identify, with recall rates of 0.66 and 0.64 for the 3V view and RVOT
views, respectively [154]. However due to use of a different dataset with different
acquisition and annotation protocols, it is not appropriate to compare these results
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directly to those presented in this thesis. Furthermore, their method is not able to
provide the level of detail that the method presented in this thesis can achieve.

2.3 Summary

Automatic analysis of ultrasound imagery is a well-studied problem, and learning
methods including Adaboost, random forests, and CNNs have previously proved
effective at detecting and segmenting anatomical structures. Despite the obvious
applicability of spatial constraints to ultrasound imagery to reflect prior knowledge
of the anatomy, this is not widespread in the literature. Analysis of ultrasound video
using temporal constraints is less well-studied, and has mostly been confined to the
somewhat different task of accurate boundary segmentation in highly constrained
adult echocardiography. There is however a rich literature within computer vision
on tackling these sorts of problems.

While automatic analysis of adult echocardiography is well-studied, there has
been very little work on fetal heart analysis, which is more challenging in a number
of ways. A few papers have detected frames containing the heart in broader scans,
and one very recent work [154] also approximately localised different views of the
heart. However, to the best of the author’s knowledge, the work in this thesis (and
the journal articles published alongside it) represents the only work to date to focus
on the automatic analysis of 2D fetal cardiac screening specifically, and gives the
most detailed analysis of this type of data yet attempted.
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This chapter considers methods to deal with the unknown orientation in fetal
ultrasound images. An existing method for rotation-invariant feature extraction
is discussed, and extensions and alterations are developed in order to make the
method suitable for use with fetal ultrasound videos.

The main ideas presented in this chapter were first presented at the IEEE
International Symposium on Biomedical Imaging (ISBI) 2015, Brooklyn, New
York, USA [155].

3.1 Background
The vast majority of algorithms for object detection in the computer vision literature
are designed and tested on objects that occur in a very limited set of poses in real
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images, for example faces, cars and pedestrians, which nearly always appear upright.
In such situations, rotation invariance of the detectors is not important, nor even
desirable in many cases where the orientation contains useful contextual information.

However, a number of the anatomical structures in fetal ultrasound images
can occur in a wide range of orientations due to differences in fetal lie and probe
positioning during scanning (see §1.4.2). The nature of ultrasound as an imaging
modality means that the angle of insonification does affect the appearance of the
image and image features in more complex ways than simply the orientation, due to
direction-dependent effects such as shadowing and specular acoustic reflection.
However for a number of structures such as the heart this effect is not very
pronounced. This chapter therefore investigates the application of rotation-invariant
detection methods to heart detection in fetal ultrasound videos.

In order to detect objects at arbitrary orientations, it is common to train a
sliding window detector on just one orientation, and at test time apply it to several
rotated versions of the test image (e.g. [111]). This brute-force approach is rather
clumsy and inefficient, which motivates the consideration of rotation-invariant object
detection methods for localising anatomical structures in ultrasound. Alternatively,
when using rotationally-variant features, a degree of robustness to small rotations
can be learnt providing there are training examples with a range of such variations,
essentially absorbing the complexity of rotations into the learning process. However,
when applied to large orientation changes, this is likely to significantly decrease
the performance of the learning algorithm.

Many approaches to achieving rotation-invariant description involve first esti-
mating a dominant orientation and using this to rotate the window to a standard
orientation before the feature extraction stage [40]. However, such techniques are
obviously sensitive to the incorrect estimates of dominant orientation.

Villamizar et al. [156] performed an initial pose estimation step by passing
one sliding window classifier over the image. This yielded a number of possible
poses, defined by their position and orientation, which are then tested with a
pose-specific classifier. Both stages used simple comparisons between HOG features
within a Random Fern framework [157].

A more elegant line of work using rotationally-invariant basis functions has
recently been proposed, exemplified by the work of Liu et al. [158, 159], and Skibbe
and Reisert [160]. In this work, a circular region of an image is described using a
set of basic features that are defined in such a way as to be analytically invariant to
rotations of the underlying region. In this way the rotation invariance comes from
neither learning nor normalisation, but rather from the image features themselves.
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Other works [158, 160] use these basis functions within voting frameworks to localise
objects in images in a way that is analogous to a generalised Hough transform.

Some success has been achieved using these approaches for detecting simple
objects such as cars in aerial imagery [159], but it is unclear whether the con-
straints imposed upon the basis functions to achieve rotation invariance reduce
the descriptive and discriminative power of these features on more complex shapes.
Another potential downside is speed, since the ‘integral image’ formulation [21]
that so effectively speeds up many feature extraction methodologies cannot be
used with the circular basis functions.

In the remainder of this chapter, the original feature extraction methodology of
Liu et al. [159] is first described and some improvements are proposed in order to
increase its computational efficiency. In Chapter 5 the suitability of these features
for fetal heart detection in ultrasound imagery and is investigated experimentally.

3.2 Definition of Rotation-Invariant Features

This section describes the ‘rotation-invariant histogram of gradients’ method of Liu
et al. [159]. The aim of the method is to create an image descriptor that captures
the same information as the successful ‘histogram of gradients’ method, but in a
way that is invariant to rotations of the underlying image patch.

When an image patch rotates, the change to the gradient field of the patch can
be decoupled into two parts. The first is that the arrangement of the gradient vector
rotates in 2D spaces. The second is that the orientation of the gradient vectors
changes. This method comprises two distinct developments that deal with these
two changes independently and together give rise to the rotation invariance of the
framework: rotation-invariant basis functions and Fourier orientation histograms.
Each of these is now described in turn.

3.2.1 Rotation-Invariant Basis Functions

Suppose that a circular image patch I(r, θ), I : R× [0, 2π)→ R, of radius R ∈ R
that is represented as a function of polar coordinates with radial coordinate r ∈ R
and angular coordinate θ ∈ [0, 2π) (defined anti-clockwise from the increasing
x-axis), where for notational convenience the origin of the polar coordinate system
is defined to be the centre of the image patch. This requires choosing a fixed patch
size for features, which for the purposes of this thesis can be based on the size of
the heart, which is assumed to be known (§ 1.4.3). A description of the image
patch is formed by multiplying the image patch by a basis function defined over
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the same spatial region and integrating over the region (in other words taking the
inner product of the region and the basis function). The basis functions u(r, θ),
u : R× [0, 2π)→ C, are in general complex-valued and have the following general
form comprised of the product of a radial part and an angular part:

u(r, θ) = p(r)eikθ (3.1)

where p(r) ∈ R represents some (real-valued) radial profile (more on this later),
the integer k ∈ Z is referred to as the rotation order of the basis function, and
i is the imaginary unit. When the product of the image region and the basis
function is integrated over the region, the result is a complex-valued raw feature,
f ∈ C, as follows:

f =
∫ 2π

0

∫ R

0
u(r, θ) I(r, θ) r dr dθ (3.2)

Note that due to the representation in polar coordinates, there is an area expansion
factor of r in Equation 3.2 representating the determinant of the Jacobian of
the transformation between rectangular and polar co-ordinates. In practice, this
integration takes place as a discrete convolution on the rectangularly sampled
image grid. This area expansion factor therefore disappears to give a simple pixel-
wise multiplication between the image patch and the basis function, followed by
summation over the circular patch. However, a continuous polar representation will
be used for the purpose of illustrating the technique as it is far more straightforward
to represent mathematically in this way.

The important part of the definition of the basis function form in Equation 3.1 is
that the angular part forms a Fourier series basis in the θ co-ordinate. Consequently,
when the underlying image patch rotates by an angle φ (in radians with anti-
clockwise defined as positive) the resulting feature value f simply undergoes a
complex phase shift to give a new value f ′ = fe−ikφ. This is analogous to the shift
property of Fourier series coefficients. The complex magnitude of these features,
i.e. |f |, therefore gives an analytically rotation-invariant quantity that represents
some aspect of the appearance of the image patch. Perfect rotation invariance will
not be achieved in the case of discrete images because of resampling effects when
the image is rotated, however these discrepancies are very small.

By using a feature set of many such features with different rotation orders, k, a
description of the image patch is built up in an analogous way to how the Fourier
series coefficients form a description of the shape of a signal. The low rotation-
order features (small |k|) represent the low frequency, more spatially smoothed
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Figure 3.1: The radial profiles in an example set of basis functions with J = 4.

information, whereas the high rotation-order features (large |k|) represent the higher-
frequency, more detailed appearance information. Most of the useful information
about appearance is contained within the lower few rotation orders, so in practice an
image description is formed from just the features gathered using the basis functions
with the lowest few rotation orders k ∈ Z0,K , where K ∈ N is some positive integer1.

In principle, the radial profile p(r) that defines the radial ‘shape’ of the basis
function can be any real-valued function of the radial coordinate r. Furthermore
a set of basis functions can be constructed using a number of such profiles (each
appearing with a number of different rotation orders), in order to capture different
information about the appearance of the image patch. Zernike moments [161] were
in fact an early example of this technique where the radial profiles were described
by Zernike polynomials. Following Liu et al. [159], a set of ‘soft histogram’ profiles,
which form a set of soft bins with triangular profiles along the radial coordinate
such that different features describe the appearance in different annular regions
of the image patch (see Figure 3.1), is used here. If a set of J ∈ N such profiles
indexed by the integer j ∈ Z0,J−1 is used, then the radial locations of the bin centres
are given by aj = jR

J
giving a set of J profiles {pj(r)}j∈Z0,J−1 defined by:

pj(r) = max
(

1− |r − aj|R
J

, 0
)

(3.3)

Using these profiles, a set of basis functions {uj,k(r, θ)}j∈Z0,J−1, k∈Z0,K
is created

using the different radial profiles and rotation orders where

uj,k(r, θ) = pj(r)eikθ (3.4)
1In the case of scalar-valued image representations, the feature values from basis functions with

rotation orders k and −k are complex conjugates, so using the negative basis functions provides
no new information. With vector-valued image representations 3.2.2, this is no longer the case, so
negative rotation orders greater than −K are also used.
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(a) An example set of rotation-invariant basis functions with J = 3 and K = 3. In this
representation, the image intensity represents the magnitude of the complex number and
the hue represents the complex argument (complex phase).
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Figure 3.2: Set of rotation-invariant basis functions.

An example set of basis functions is shown in Figure 3.2.

3.2.2 Fourier Orientation Histograms

The rotation-invariant basis functions in §3.2.1 provide a means to create a rotation-
invariant description of a circular image patch based on the image intensity (or
any transformation of it that results in a scalar image). However, many successful
object detection algorithms have made use of the image intensity gradient, which is
a vector-valued quantity. Typically these approaches form a magnitude-weighted
orientation histogram [23] that places the intensity gradient vectors into bins
according to both image location and intensity gradient orientation, and weights
the contributions to the bins by the intensity gradient magnitude. Unfortunately
this has poor orientation behaviour because the discrete histogram representation
changes in a complex way when the underlying image rotates due to the intensity
gradient vectors being re-allocated into bins (Figure 3.3).

Instead, and again following Liu et al. [159], the Fourier orientation histogram
method maintains a continuous histogram of the orientations found within an image
region, i.e. a function of orientation h(ξ), h : R→ R, that may be evaluated for any
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orientation ξ (in rad). Since this function is by its nature periodic in orientation,
a natural way to represent the continuous orientation histogram h(ξ) is using its
Fourier series coefficients, which shall be denoted {cm}m∈Z, where cm ∈ C, i.e.

h(ξ) =
∞∑
−∞

cme
imξ (3.5)

Note that because h(ξ) is a real valued quantity, cm = c−m and therefore the
coefficients for m < 0 carry no new information and may be ignored for the purposes
of image description. Furthermore in practice only a finite, and typically quite small,
number M ∈ N of the positive coefficients is maintained resulting in a smoothed
Fourier histogram function. Some degree of smoothing is generally beneficial as it
increases the robustness of the description to small changes in appearance.

The advantage of this representation is that when the underlying image patch
rotates by an angle φ, in rad, (and therefore all the individual gradient vectors
rotate by the same angle), the continuous Fourier histogram representation simply
shifts cyclically giving h′(ξ) = h(ξ − φ) (Figure 3.3). This manifests itself as a
phase shift of the Fourier coefficients, specifically c′m = cme

−imφ. Consequently
the complex magnitude of the Fourier coefficients {|cm|}m∈Z0,M

gives a rotation-
invariant description of the image patch.

It remains to be shown how such an orientation histogram (represented by its
Fourier coefficients) can be computed from a set of gradient vectors on an image
grid. This proceeds in two stages: first a histogram representation is formed for each
pixel individually, and then these are accumulated across a spatial region. Assume
that an estimate of the image gradient can be generated using some standard
method, yielding a vector valued gradient image g(x), g : R2 → R2 where the
orientation of the gradient (defined anticlockwise from the increasing x-axis) at
x is given by ∠g(x) and the gradient magnitude at x is given by ‖g(x)‖. The
continuous orientation histogram of a single pixel h(x, ξ) is simply a δ-function
at the gradient orientation of that pixel, with magnitude ‖g(x)‖. Therefore, the
coefficients of the finite Fourier representation can be found from the standard
Fourier series expansion of a δ-function:

h(x, ξ) = δ(ξ − ∠g(x)) (3.6)
⇒ cm(x) = ‖g(x)‖e−im∠g(x) (3.7)

It is helpful to think of this process as taking a vector-valued gradient image g(x)
and producing a set of complex-valued coefficient images {cm(x)}m∈Z0,M

, where
cm : R2 → C. This is illustrated in Figure 3.4.
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(a) An image patch with gradient vectors
and an eight-bin discrete histogram of
the magnitude-weighted gradient orienta-
tion. The magenta line indicates the ‘true’
continuous histogram (in fact a discrete
histogram with a very large number of
bins).
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(b) When the patch rotates, the gradient
vectors are re-binned and the histogram
representation changes in an unpredictable
way.
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(c) A magnitude-weighted Fourier orienta-
tion histogram representation of the same
image patch, using six complex-valued
Fourier coefficients.
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(d) The histogram changes via a cyclic
shift (modulo small resampling effects)
when the image patch rotates, which man-
ifests itself as a phase shift of coefficients.

Figure 3.3: Illustrative comparison between discrete orientation histograms and Fourier
orientation histograms.
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Figure 3.4: Illustration of the expansion process from the gradient image to the Fourier
coefficient images. In the expanded images, the hue intensity represents the complex
magnitude and the hue represents the complex argument using the convention of Figure 3.2

The orientation histogram over a patch of pixels can be formed by summing the
orientation histograms for all of the individual pixels in the patch. Because of the
linearity of the Fourier series representation, this can be achieved straightforwardly
by accumulating the coefficients over the image patch within each of the expanded
coefficient images.

3.2.3 Rotation-Invariant Histogram of Gradients

The rotation-invariant basis functions in §3.2.1 provide a method for rotation-
invariant description of circular image patches in a single channel (scalar-valued)
image. The Fourier orientation histograms in §3.2.2 provide a method to describe
a rotation-invariant orientation histogram for a vector-valued image (such as an
image gradient field), but this only results in fully rotation-invariant features if
the spatial aggregation process is rotation-invariant also. The method of Liu et
al. [159] therefore combines these two methods to create a fully rotation-invariant
orientation-histogram-style description.

A rotation-invariant orientation histogram feature, fj,k,m ∈ C, is found by
applying the basis function uj,k(r, θ) with profile index j and rotation order k
to the Fourier orientation histogram coefficient image cm(r, θ) of the patch (now
represented in polar coordinates) as follows:

fj,k,m =
∫ 2π

0

∫ R

0
uj,k(r, θ) cm(r, θ) r dr dθ (3.8)

The effective rotation order, k̂, of the resulting raw image feature is k̂ =
k −m. In other words if the image patch (and therefore the gradient field) rotates
through an angle φ, the raw feature value undergoes a phase shift of k̂φ to give
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f ′j,k,m = fj,k,me
−ik̂φ. Consequently the complex magnitudes of these raw feature

values are rotation-invariant.
Note that for m > 0, the coefficient images are complex-valued, and therefore the

raw features gathered from basis functions with negative rotation orders k < 0 now
carry information that is not present in the corresponding raw feature with k > 0.

3.2.4 Derived Rotation-Invariant Feature Sets

In order to use the rotation-invariant features in standard machine learning al-
gorithms, real-valued rotation-invariant quantities must be extracted from the
(generally complex-valued) raw features, f , that have been discussed so far. The
term derived features shall be used to describe these features and differentiate
them from the raw features. In fact this is slightly more complicated than simply
taking the complex magnitude as has been suggested so far. To help with the
notation in this section, the set of all raw features gathered from an image patch
as shall be denoted RJ,K,M , parametrised by J ∈ N, K ∈ N0, and M ∈ N0. This
includes raw features gathered with non-negative basis function rotation orders
k ≥ 0 when m = 0 and all available (positive and negative) basis function rotation
orders when m > 0. Specifically, in set builder notation:

RJ,K,M = {fj,k,m : (j ∈ Z0,J−1) ∧ (k ∈ Z0,K) ∧ (m = 0)} . . .
∪ {fj,k,m : (j ∈ Z0,J−1) ∧ (k ∈ Z−K,K) ∧ (m ∈ Z1,M)} (3.9)

In the following subsections, various sets of derived features that can be created
from these raw features are described. The ‘basic’ and ‘coupled’ features sets
described below are similar to features used the original work [159], whereas the
‘extra’ set is a novel set of features.

‘Basic’ Rotation-Invariant Features

A number of rotation-invariant quantities can be derived from the individual raw
features. These features shall be grouped together to form the ‘basic’ derived feature
set. Recall that in general the raw features, fj,k,m, are complex numbers. However
a small number of the raw features will have k = m = 0 and will therefore be the
result of a convolution of a purely real basis function with a purely real coefficient
image and hence themselves be rotation-invariant purely real numbers (simply
representing the gradient magnitude image weighted by a real-valued rotationally-
symmetric basis function and integrated over some image region ). These features
shall collectively be known as the first part of the basic derived feature set, B1

J,K,M .
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B1
J,K,M = {fj,k,m : (fj,k,m ∈ RJ,K,M) ∧ (k = m = 0)} (3.10)

Furthermore, some further raw features will be complex-valued but have an
effective rotation order, k̂, of 0 and therefore be rotation-invariant. Both the
real parts and imaginary parts of these values can be used in the derived set.
This set of derived features shall be collectively known as the second part of the
basic derived feature set, B2

J,K,M :

B2
J,K,M ={Re(fj,k,m) : (fj,k,m ∈ RJ,K,M) ∧ (k −m = 0) ∧ (k 6= 0)} . . .

∪ {Im(fj,k,m) : (fj,k,m ∈ RJ,K,M) ∧ (k −m = 0) ∧ (k 6= 0)} (3.11)

The remaining raw features in RJ,K,M are those with non-zero effective rotation
orders, k − m 6= 0. These are therefore complex numbers whose arguments do
vary with rotation of the image patch. Therefore, the third and final part of
the basic derived feature set, B3

J,K,M , is comprised of the complex magnitudes
of these raw features:

B3
J,K,M = {|fj,k,m)| : (fj,k,m ∈ RJ,K,M) ∧ (k −m 6= 0)} (3.12)

The basic derived feature set BJ,K,M for use with machine learning algorithms
is the union of these three parts:

BJ,K,M = B1
J,K,M ∪ B2

J,K,M ∪ B3
J,K,M (3.13)

Coupled Rotation-Invariant Features

The basic feature set (§3.2.4) contains derived features that are each obtained
from a single raw feature. However, this ignores the fact that relative phase
information between two raw features can also contain rotation-invariant information
about the structure of the image patch. New derived features can therefore be
created by coupling the raw features to give quantities that encode relative phase
information. A coupling function, d(f1, f2), d : C × C → C, is defined between
two raw features as follows:

d(f1, f2) = f1f2

|f1||f2|
(3.14)

This will result in a rotation-invariant quantity provided that the effective rotation
orders of the two raw features are the same. This is satisfied when k̂1 = k̂2 or
equivalently k1 − m1 = k2 − m2.
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To show this, consider writing the two features in the exponential form of a
complex number, using magnitude r and argument θ:

f1 = r1e
iθ1 (3.15)

f2 = r2e
iθ2 (3.16)

Now the result of the coupling function is

d(f1, f2) = f1f2

|f1||f2|

= r1e
iθ1r2e

−iθ2

r1r2

= ei(θ1−θ2) (3.17)

This shows how the coupling function can intuitively be understood to encode
the relative phase between the two raw features.

Then, according to the definition of these features, if the image patch rotates
through an arbitrary angle φ, the values of the features undergo a complex phase shift
of −k̂nφ where k̂n is the effective rotation order of feature n, equivalent to kn −mn

(see §3.2.3). Therefore after rotation, the new feature values are f ′1 and f ′2, where

f ′1 = r1e
i(θ1−k̂1φ) (3.18)

f ′2 = r2e
i(θ2−k̂2φ) (3.19)

In this form, it is straightforward to show that the coupling function in Equation
3.14 results in a rotation-invariant quantity:

d(f ′1, f ′2) = f ′1f
′
2

|f ′1||f ′2|

= r1e
i(θ1−k̂1φ) r2e

i(θ2−k̂2φ)
r1r2

= r1e
i(θ1−k̂1φ) r2e

−i(θ2−k̂2φ)
r1r2

= ei(θ1−k̂1φ−θ2+k̂2φ)

= ei(θ1−θ2)

= d(f1, f2) (3.20)
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where the fifth line follows from the fact that the two raw features have the same
effective rotation order k̂1 = k̂2, and therefore φ cancels out from the expression.

If the raw features (both) have an effective rotation order, k̂, of 0, then the
coupled features will contain information that is already contained within the basic
feature set and are therefore not placed in the coupled feature set. Note also that
dividing by the raw feature magnitude in Equation 3.14 is not strictly necessary
in order to produce a rotation-invariant quantity. However, by normalising by the
magnitude this method ensures that the derived features represent only the relative
phase information and the effect of the raw feature magnitudes, which is captured
by other derived features in the basic feature, is removed.

The results of the coupling function are complex-valued and rotation-invariant,
and therefore both the resulting real and imaginary parts may be used as derived
features. A derived coupled feature set, CJ,K,M , is defined in the following way:

CJ,K,M ={Re (d(fj1,k1,m1 , fj2,k2,m2)) : (fj1,k1,m1 ∈ RJ,K,M) ∧ . . .

(fj2,k2,m2 ∈ RJ,K,M \ fj1,k1,m1) ∧ . . .

(k1 −m1 = k2 −m2) ∧ (k1 −m1 6= 0)} . . .

∪ {Im (d(fj1,k1,m1 , fj2,k2,m2)) : (fj1,k1,m1 ∈ RJ,K,M) ∧ . . .

(fj2,k2,m2 ∈ RJ,K,M \ fj1,k1,m1) ∧ . . .

(k1 −m1 = k2 −m2) ∧ (k1 −m1 6= 0)} (3.21)

The coupled derived feature set contains a large number of extra features that
encode finer level detail about the appearance of the image patch than the features
in the basic feature set, and are not computationally expensive to calculate if the
raw feature values are already known.

Extra Coupled Rotation-Invariant Features

In fact, coupling between raw features is not limited to raw features of the same
effective rotation order. Here, a novel method for creating ‘extra’ coupled features
(beyond those described in [159]) is introduced. These are found by coupling raw
features with different effective rotation orders. This is achieved by first raising
the raw features to a power, giving an alternative, generalised coupling function
d̃(·, ·), d̃ : C × C → C, as below:

d̃(f1, f2) = fp1
1 fp2

2
|fp1

1 ||f
p2
2 |

(3.22)
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where p1 ∈ R and p2 ∈ R are powers to be determined. It is again assumed that the
two features f ′1 and f ′2 are calculated from the same image patch as f1 and f2 after it
has been rotated through an arbitrary angle φ. However, now is it not assumed that
the effective rotation orders, k̂1 and k̂2, of the two raw features f1 and f2 are the same.
The result of the generalised coupling function on f1 and f2 before rotation is then:

d̃(f1, f2) = fp1
1 fp2

2
|fp1

1 ||f
p2
2 |

= rp1
1 e

ip1θ1rp2
2 e
−ip2θ2

rp1
1 r

p2
2

= ei(p1θ1−p2θ2) (3.23)

after the rotation by φ the result of the generalised coupling calculation is:

d̃(f ′1, f ′2) = f ′p1
1 f ′p2

2
|f ′p1

1 ||f
′p2
2 |

= rp1
1 e

ip1(θ1−k̂1φ)rp2
2 e
−ip2(θ2−k̂2φ)

rp1
1 r

p2
2

= ei(p1θ1−p1k̂1φ−p2θ2+p2k̂2φ) (3.24)

Comparing Equations 3.23 and 3.24 shows that in order for the generalised
coupling function to result in a rotation-invariant quantity p1 and p2 must satisfy:

p1k̂1 = p2k̂2 (3.25)

such that the rotation angle φ cancels from Equation 3.24. Note that this is not
possible in cases where either k̂1 = 0 or k̂2 = 0, so coupling cannot be performed in
these cases. Notice also that the original coupling function d(·, ·) in Equation 3.21
may be considered a special case of the generalised coupling function d̃(·, ·) where
p1 = p2 = 1 and Equation 3.25 is satisfied because k̂1 = k̂2.

In the general case, there are many ways of choosing p1 and p2 to ensure
that Equation 3.25 is satisfied. Perhaps the simplest is to choose p1 = k̂2, p2 =
k̂1, meaning that each raw feature is raised to the power of the other feature’s
effective rotation order before coupling. This gives the following form for the
generalised coupling function:
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d̃(f1, f2) = f k̂2
1 f k̂1

2

|f k̂2
1 ||f k̂1

2 |
(3.26)

Note that it is better to evaluate this using the following equivalent form to
avoid the possibility of numerical overflow or underflow by normalising before
raising to the power:

d̃(f1, f2) =
(
f1

|f1|

)k̂2

·
(
f2

|f2|

)k̂1

(3.27)

Equipped with this coupling function, an extra coupled feature set, EJ,K,M , can
be created by combining all possible raw feature couplings except those that are
already in the previously defined coupled feature set. This means omitting any
combinations where either k̂1 = 0 or k̂2 = 0 (since coupling is not possible in these
cases) and cases where k̂1 = k̂2 (since these are already in the coupled feature set).

EJ,K,M ={Re
(
d̃(fj1,k1,m1 , fj2,k2,m2)

)
: (fj1,k1,m1 ∈ RJ,K,M) ∧ . . .

(fj2,k2,m2 ∈ RJ,K,M \ fj1,k1,m1) ∧ . . .
(k1 −m1 6= k2 −m2) ∧ (k1 −m1 6= 0) ∧ (k2 −m2 6= 0)} . . .
∪ {Im

(
d̃(fj1,k1,m1 , fj2,k2,m2)

)
: (fj1,k1,m1 ∈ RJ,K,M) ∧ . . .

(fj2,k2,m2 ∈ RJ,K,M \ fj1,k1,m1) ∧ . . .
(k1 −m1 6= k2 −m2) ∧ (k1 −m1 6= 0) ∧ (k2 −m2 6= 0)} (3.28)

Rotation-Equivariant Features

For some purposes in this thesis, it will be useful to derive not only rotation-invariant
features from the raw features but also rotation-equivariant features. These are
angular features that vary at the same rate as the rotation of the underlying image
patch, i.e. if the image patch rotates by φ, the equivariant features also rotate by φ.
Such features therefore encode information about the rotation of the patch that
can be used to predict the orientation of structures. Each feature in the set is an
angular feature in the range [0, 2π) and the set of such features in constructed from
the complex arguments of all raw features with effective rotation order k̂ = 1, and
the negative complex argument of those with k̂ = −1.

QJ,K,M ={∠ (fj,k,m) : (fj,k,m ∈ RJ,K,M) ∧ (k −m = 1)} . . .
∪ {−∠ (fj,k,m) : (fj,k,m ∈ RJ,K,M) ∧ (k −m = −1)} (3.29)
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Symbol Name Description
BJ,K,M Basic Set Contains rotation-invariant quantities from a

single raw feature
CJ,K,M Coupled Set Contains rotation-invariant quantities result-

ing from coupling two raw features with the
same effective rotation order

EJ,K,M Extra Coupled Set Contains rotation-invariant quantities result-
ing from coupling two raw features with
different effective rotation orders

QJ,K,M Equivariant Set Contains rotation-equivariant quantities de-
rived from a single raw feature

Table 3.1: Summary of derived feature sets used in this thesis.

Summary

Table 3.1 provides a summary of the different feature sets used in this thesis.

3.3 Alternative Image Representations

In its original formulation [159] the rotation-invariant histogram of oriented gradients
was used to gather rotation-invariant image features from the image gradient field.
However, exactly the same formulation may be used with any 2D-vector field that
describes an image patch. Furthermore, any scalar-valued image representation
(such as the unaltered image intensity itself) can be used within the same framework
by considering the image scalar representation as the single coefficient image of
the Fourier orientation histogram with M = 0 (this is the description procedure
described in §3.2.1 before the Fourier orientation histogram was introduced). These
different options shall be referred to as image representations, and the following
will be used in the remainder of this thesis:

Image Intensity (int) : The unprocessed image is used as a scalar image repre-
sentation.

Image Gradient (grad) : The image gradient is computed using a Sobel filter
with a kernel size of 5× 5 pixels and thereafter considered to be a vector
image representation.

Motion (motion) : A motion estimate is computed using the current video frame
and the previous video frame. This is performed with the Farnebäck’s motion
estimation algorithm [162] with the parameters given in Table 3.2.
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Parameter Value
Number of Levels 1

Averaging Window Size 10
Polynomial Degree, n 7

Standard Deviation σ of Smoothing Gaussian 1.5

Table 3.2: Table of parameters used for motion estimation.

These parameters have been chosen to give a fast, approximate motion field
estimate, rather than an accurate one. Once calculated, the motion estimate
is used within the rotation-invariant framework in exactly the same way as
the image gradient. Pilot experiments suggested that choosing parameters
to give a more accurate estimate did not significantly affect results, but did
significantly increase processing time.

3.4 Implementation of Fast Rotation-Invariant Fea-
tures

Liu et al. [159] have made their MATLAB implementation of the Rotation-Invariant
HOG feature extraction method publicly available2. According to their results, this
implementation requires 18 seconds to calculate features densely for a 792× 636
image and “most time is spent on the convolutions” [159]. Unfortunately this
is too slow for the purposes here, where ideally the entire pipeline should run
at frame rate. A new C++ implementation has therefore been developed that
is tailored for the purposes of this thesis and makes a number of changes in
order to achieve a significant performance increase. The implementation used for
experiments is publicly available as a documented C++ library on Github3. This
section describes the various changes that have been made, listed approximately in
the order contribution of the speed increase (largest contrbution first). The effect
of some of these is explored experimentally in §5.6.1.

Frequency Domain Convolutions: The convolution of each of the coefficient
images in the Fourier histogram expansion of a video frame with each basis
function is by far the most time-consuming step in the process. This step
is sped up by replacing the convolution operations with frequency domain
multiplications. The frequency domain representations of the basis functions
are pre-calculated and stored. Whenever a new frame arrives, its Fourier

2http://lmb.informatik.uni-freiburg.de/resources/opensource/FourierHOG/
3http://github.com/CPBridge/RIFeatures

http://lmb.informatik.uni-freiburg.de/resources/opensource/FourierHOG/
http://github.com/CPBridge/RIFeatures
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histogram expansion is found (in the spatial domain) to give a set of coefficient
images. The 2D fast Fourier transform (FFT) algorithm is used to calculate
and store the frequency domain representations of these coefficient images.
Then, when a raw feature (that has not already been calculated) is requested by
the random forest model, the pre-calculated frequency domain representations
of the relevant basis function and coefficient image are multiplied element-wise
and the resulting frequency domain image is then brought back to the spatial
domain via the 2D inverse fast Fourier transform (IFFT) to give the requested
raw feature image. See §3.5 for further details on finding the frequency domain
representation of the basis functions analytically.

Image Subsampling: In practice ultrasound images can be resized to give a
smaller image (and therefore fewer pixels to test and faster calculations for
each pixel) without a significant loss of accuracy. Experience suggests that
reducing the image size by a factor of approximately 3 can give a speed-up of
around 4× whilst retaining high accuracy on the videos in the dataset.

On-Demand Feature Calculations: One significant practical advantage of ran-
dom forests over a number of other learning algorithms is that only a (typically
quite small) subset of the possible features needs to be evaluated in order to
make a decision about a given data point. It is therefore highly wasteful to
calculate all features for all datapoints, particularly in a performance-critical
setting. This is especially useful when feature coupling is used, because then
the number of possible features becomes very large (typically thousands).
This is exploited by only calculating features as they are requested by the
random forests. Calculated values are stored so that they may be re-used if
requested later by another node in the random forest.

Low-level Programming: One simple reason the new implementation is signif-
icantly faster than the previous implementation is the use of a low-level
compiled programming language (C++) with heavy use of compiler optimisa-
tions, rather than a high-level, interpreted language (MATLAB). However,
MATLAB uses techniques such as just-in-time (JIT) compilation to improve
performance and common tasks such as convolution are heavily optimised,
reducing the performance difference.

Multi-threading: The random forests implementation exploits multi-core pro-
cessors to speed up the calculation of random forest results by using an
independent thread for each tree in the forest. This is not trivial to achieve in
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combination with the rotation-invariant feature calculations because ‘cached’
feature images (those that have been previously calculated and stored) must
be shared between the threads in a thread-safe manner. The implementation
uses thread locks to control read and write access to these shared resources in
order to enable parallel threads make calls to the feature extraction routines.
A simplified programme listing is shown in §A.3 and full details may be found
in the Github repository. Experience suggests that using 8 threads, this
can provide an approximately 2-3× speed-up relative to a single-threaded
implementation.

Automatic Choice of Calculation Method: As discussed above, the use of
frequency domain calculations can result in significant speed increases over
spatial domain convolutions. Such calculations necessarily involve calculating
the features for every pixel in the input image at once. However, in the
low levels of a random forest (nodes far from the root) there are typically a
small number of data points arriving at each node. For such nodes it may
therefore be more efficient to use spatial domain convolutions for just the
requested points, rather than use frequency domain calculations for the entire
image. The implementation of the random forests algorithm used in this thesis
requests the features for all points that arrive at a node together, allowing
the feature extraction routine to decide which way will be the most efficient
way to perform the calculations for the requested number of points.

3.5 Frequency Domain Calculations

So far the procedure for creating a rotation-invariant description of some image
patch has been considered. This is achieved by integrating the product of the
basis function and the patch (Equation 3.2) or a Fourier orientation histogram
coefficient image generated from the patch (Equation 3.8). For the purposes of
object detection, this procedure must be performed on all such circular patches
within the test image. The results are images of raw features, fj,k,m(x), that
are generated through convolution of the basis functions with the input image
(or Fourier orientation histogram coefficient channel). This section shall consider
all images to be coefficient images without loss of generality since a scalar input
image can be considered as the sole coefficient image m = 0 in an expansion with
M = 0. Expressing the (spatial domain) basis functions in Cartesian coordinates,
the convolution operation may be expressed:
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fj,k,m(x) =
∫∫
U
uj,k(u)cm(x− u) du (3.30)

where U is the region of spatial support for the basis functions.
In many situations large speed improvements can be made to the convolution

operation by moving from spatial domain convolution to the equivalent frequency
domain multiplication. If the size of the image is X × Y , and the size of the basis
function is R×R (though the basis function is circular it must still be represented
on a square rectangular grid), then performing a 2D convolution operation has
complexity O(XY R2). By contrast, if the fast Fourier transform (FFT) of the
filter can be pre-calculated and stored, filtering in the frequency domain involves
finding the FFT of the input image with complexity O(XY log(XY )), followed by
pixel-wise multiplication by the frequency domain filter with complexity O(XY ),
and finally performing the inverse FFT with complexity O(XY log(XY )) again.
Due to the lower computational complexity, this can be achieved more quickly than
direct convolution, especially when the image and the filter are relatively large.

Therefore, this section explores the frequency domain representations of the
basis functions described in §3.2.1. Whilst it is possible to calculate the frequency
domain representations numerically via the FFT, an analytical representation is
derived in the Appendix (§A.4) for increased flexibility and increased understanding
of the filtering process. The frequency domain representations of an example set of
basis functions calculated using this analytical representation is shown in Figure 3.5.
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(a) Frequency domain representations of the basis functions shown in Figure 3.2 (page
46). In this representation, the image intensity represents the magnitude of the complex
number and the hue represents the complex argument (complex phase).
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(b) Legend for the interpretation of colour in the above table.

Figure 3.5: Frequency domain representations of an example set of basis functions.
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In this chapter, the random forest formulations for heart detection, heart
classification, heart orientation, and cardiac phase prediction are presented. The
formulation of the circular regression forest was presented in a journal article in
Medical Image Analysis [163].

4.1 Overview

The random forests algorithm [35, 36] is a popular machine learning algorithm
that has been used in a number of contexts, including analysis of natural and
medical images [37, 72, 73, 121–125, 164]. It is well suited to the analysis of
fetal cardiac ultrasound videos because it is highly flexible, and can therefore be
adapted to the tasks of view classification and phase estimation, it can be highly
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computationally efficient, due to only needing to calculate a subset of the possible
feature in order to make a prediction, and is less vulnerable to overfitting than
many other learning methods.

The presentation of the random forests algorithm in this chapter largely follows
that of Criminisi et al. [37]. As a general framework, random forests can be
considered as a method for predicting an output label, l, belonging to some label
space, L, based on some d-dimensional vector of possible features, f ∈ Rd, measuring
different aspects of the image information. Note that although for notational
simplicity the set of all possible features is described as a vector, in practice it may
not be necessary to ever create the full vector when implementing the algorithm.
In many applications, the feature values can be calculated on-the-fly when they
are needed for both training and testing.

A forest consists of an ensemble of binary decision trees, where each tree is a
set of nodes. Some nodes are split nodes, which carry out some test on the input
features and pass the input down to either its left or right child node depending
upon the result of that test. The input is passed down the tree from a single root
node through split nodes until it reaches a leaf node. Each leaf node contains a leaf
distribution over the value of the output label l ∈ L given the image information
contained in f , i.e. the distribution p(l | f). See Figure 4.1 for an illustration of
a single decision tree in a random forest.

Here the form of the the split function, g(·), at each split node with index
n ∈ N0 shall be constrained to one that compares the value of one element of the
feature vector to a threshold value. Let ξ(f) be a function that extracts a single
value from the feature vector, i.e. ξ : Rd → R. This value is then compared to a
threshold τ resulting in a binary split function g(f ,Θ) ∈ {0, 1} where Θ = (ξ, τ)
is a tuple representing the parameters of the split node.

g(f ,Θn) = I [ξn(f) > τn] (4.1)

where I [·] is the indicator function.
At test time, the unseen test samples are passed into the root node of each tree

and move down the nodes until they arrive at one leaf node per tree. Depending
on the application, the results from the set of trees are somehow aggregated
across the forest.
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Figure 4.1: Cartoon illustration of a single decision tree in a random forest. The
white nodes represent the split nodes, which are described by the feature index, in, and
threshold, τn, used to split the data that arrive at the node. The grey nodes represent the
leaf nodes that contain a distribution over the output label space. The form of this leaf
distribution varies according to the prediction task, but a four class discrete distribution
is shown here for illustrative purposes.

4.1.1 Training

Training the forests involves deciding which nodes are leaf nodes, choosing the
parameters of each leaf distribution, and choosing the parameters of each split
node (ξn and τn) given a set of labelled training data, for which the label value
and all feature values are known.

This is done by first randomly partitioning (bagging) the labelled training data
into partitions, and training each tree in the forest on a different partition in order
to increase the diversity of the trees and hence reduce overfitting. Bagging is
implemented by randomly and independently choosing a training set for each tree
in the forest consisting of a fraction λbag of the full training set.
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The set of output labels for training data that arrive at node n during training
will denoted by Sn = {s}, s ∈ L.

The aim of the training process is to find which features split the training data
in a way that leads to the training points with similar training labels being grouped
together in the children nodes, leading to increasingly ‘pure’ nodes towards the
bottom of the forest. The notion of ‘purity’ is captured by an information gain
function, G(·), that gives high scores to splits that lead to purer child nodes. The
form of this information gain function varies for specific implementation of forests.

The trees are trained in a greedy, node-wise manner, starting at the root node.
At each node, a set of randomly-generated feature selection functions ξ, are chosen
and evaluated using the information gain function. The feature that gives the
best split and the corresponding threshold (found by brute-force optimisation) are
chosen for that node, and training proceeds to the children nodes.

A number of different stopping criteria are used to decide when a node should
become a leaf node rather than a split node, thereby terminating the training
process for that branch of the tree. These stopping criteria are:

• The number of training samples in the node goes below some minimum level,
Nnodemin.

• A certain maximum depth, Dmax, in the forest is reached.

• The information gain of the best feature goes below some minimum value.

and a leaf node is declared if any of the above criteria are met.

4.2 Classification Forests

Classification forests are among the most commonly used formulations of the
random forests algorithm. Their purpose is to classify the input into one of a
number of discrete classes given the input data. Consequently, the label space
L is some set of discrete labels. Later in this thesis, a classification forest will
be used to classify image windows as belonging to one of the different fetal heart
views or a background (BG) class, giving a label space L = {BG, 4C,LVOT, 3V}.
In this case, the leaf distributions are empirical discrete distributions over these
four class labels. Whilst the formulation of random forest classifiers is well known,
it is presented briefly here for completeness and to provide a comparison with
the circular regression forests in §4.3.
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The information gain function in the case of classification forests measures the
change in discrete entropy before and after the split:

G(Sn,S(L)
n ,S(R)

n ) = h(Sn)−
∑

j∈{L,R}

|S(j)
n |
|Sn|

h(S(j)
n ) (4.2)

where Sn is the set of labels in the nth node (being trained), and S(L)
n and S(R)

n

are respectively the labels of the training samples that would be moved to the left
and right nodes after the proposed split. h(·) represents the Shannon entropy
of a set of discrete labels:

h(S) = −
∑
l∈L

p(l) log p(l) (4.3)

where the label probabilities p(l) represent the empirical probabilities within
the set S. The value of information gain below which training is terminated
is denoted Gmin,c.

4.2.1 Discrete Leaf Distributions

The leaf nodes in classification forests are empirical discrete distributions over the
discrete output label space. During training, they are fitted by simply counting
the proportion of occurrences of each class label in the training set that arrives
at each node. The resulting leaf distribution may be written

p(l | f) = pl (4.4)

where pl are constants 0 ≤ pl ≤ 1 and

∑
l∈L

pl = 1 (4.5)

In order to generate a single prediction for the output label, the single most
likely label is chosen after combining the leaf probabilities from each of the T trees:

l∗ = arg max
l

1
T

T−1∑
t=0

pl (4.6)
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4.3 Circular Regression Forests

One aim of this thesis is to predict the cardiac phase (i.e. point in the cardiac
cycle) given the image features. This will be referred to here as a circular regression
problem because the output label is an angle L ∈ [0, 2π) belonging in a circular
space. It is inappropriate to use information gain functions intended for standard
regression (onto a real-valued output label space), because this would not respect
the circular nature of the label space. For example, consider two training samples
with labels s1 = ε and s2 = 2π − ε, where ε is some small positive number (ε� π).
Any information gain function intended for regression onto a real-valued variable
would heavily penalise a split that resulted in s1 and s2 being sent to the same child
node, but in fact s1 and s2 are very close when they represent an angular variable.

This section therefore presents a novel formulation of random forests that
is designed for regression onto a circular output space. This is achieved by
adapting the following popular information gain function designed for linear re-
gression forests [165]:

G(Sn,SL,SR) =
∑
s∈Sn

(s− µ(Sn))2 −
∑

j∈{L,R}

 ∑
s∈S(j)

n

(
s− µ(S(j)

n )
)2

 (4.7)

where µ(S) calculates the mean label of the set S, defined in the standard way.
One can understand this information gain function as comparing the sum of square
distances from the mean within the node and the proposed child nodes. A split
that substantially reduces the sum of square distances from the mean will have
a high information gain score.

In order to adapt this information gain function for circular regression two
things are needed: a method for calculating a meaningful mean of a set of angular
variables and a meaningful way to measure distance between two angular variables.
For the mean label, the following measure taken from Jammalamadaka and Sen
Gupta [166] is used:

µ(S) = atan2
(

1
|S|

∑
s∈S

sin s, 1
|S|

∑
s∈S

cos s
)

(4.8)

where atan2(·) is the four-quadrant arctangent function. One can intuitively
understand this as the orientation of the resultant vector formed by summing
unit vectors in the directions of each of the angular labels in the set.

The measure of distance on a circle, also from Jammalamadaka and Sen Gupta
[166], is as follows:
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1
2 (1− cos (s1 − s2)) (4.9)

This measure of distance evaluates to its minimum value of 0 if the two angles are
the same (or differ by an integer multiple of 2π) and evaluates to its maximum
value of 1 if the two angles differ by π (or an odd integer multiple of π such as ±3π
or ±5π). Combining these two, an information gain measure can be created that
measures the sum of squared circular distances from the circular mean:

G(Sn,S(L)
n ,S(R)

n ) =
∑
s∈Sn

1
2 (1− cos (s− µ (Sn)))2 − . . .

∑
j∈{L,R}

 ∑
s∈S(j)

n

1
2
(
1− cos

(
s− µ

(
S(j)
n

)))2

 (4.10)

The value of information gain below which training is terminated is denoted
Gmin,φ.

4.3.1 Von Mises Leaf Distributions

In addition to a suitable information gain function, the circular regression forests
need a leaf distribution that is suitable for the circular output label variables.
The von Mises distribution (also known as the circular normal distribution) is an
appropriate distribution that is commonly used for circular data. It is analogous
in many ways to the Gaussian (normal) distribution for linear data except that it
defined on a circular domain [166]1. Unlike many distributions for circular data it has
a relatively simple form for the PDF, and is also the maximum entropy distribution
for a circular variable with a known circular mean and circular variance. A von
Mises distribution is defined by two parameters: the circular mean µ, analogous
to the mean of a Gaussian distribution, and the concentration κ, analogous to the
reciprocal variance (or precision) of a Gaussian distribution 1/σ2. The PDF of
the von Mises distribution has the following form:

V(x | µ, κ) = 1
2πI0(κ)e

κ cos(x−µ) (4.11)

where I0(·) is the zero-order modified Bessel function of the first kind. Figure 4.2
shows some example von Mises distributions for different parameters.

1This should not be confused with the wrapped normal distribution, which is simply a Gaussian
PDF wrapped around the circular domain and is not the same as a von Mises distribution.
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Figure 4.2: PDFs of three von Mises distributions defined over the interval 0 to 2π
shown in both polar (left) and Cartesian (right) form. The µ parameter represents the
mean angle, and the κ parameter describes the concentration of probability mass around
this mean.

In each leaf node, of the circular regression forest, a von Mises distribution is
fitted to the training samples in the node using a maximum likelihood estimate of the
distribution parameters. The mean parameter µ can be found using the definition in
Equation 4.8. The concentration parameter κ can be found by first finding R, which
is the length of the average vector when the angular data are treated as unit vectors:

R =

√√√√( 1
|S|

∑
s∈S

cos s
)2

+
(

1
|S|

∑
s∈S

sin s
)2

(4.12)

Given R, κ can be estimated by numerically solving the following equation [166]:

R = I1(κ)
I0(κ) (4.13)

This was implemented by re-writing the equation as a function f(κ) to solve
for f(κ) = 0, and solving using a standard hybrid non-linear solver that makes
use of this function and its derivative:

f(κ) = I1(κ)−RI0(κ) (4.14)
df
dκ = 1

2 (I0(κ) + I2(κ))−RI1(κ) (4.15)

In order to give a point estimate for the output label from the forest, the relevant
leaf distributions are found in the usual way giving a set of leaf node parameters
{(µt, κt)}Tt=0 from each tree. These are then combined following the maximum
likelihood fusion approach of Stienne et al. [167]:
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l∗ = atan2
(

T∑
t=0

κt sin (µt) ,
T∑
t=0

κt cos (µt)
)

(4.16)

This can be understood intuitively as a weighted average of the means µt of
the leaf distributions where the weights is are concentration parameter κt (c.f.
Equation 4.8).

4.4 Orientation Prediction with Rotation-Invariant
Features

When using rotation-invariant features as the image features, the estimation of
view classification and cardiac phase takes place in a way that is invariant to the
orientation of the image. In order to estimate the orientation, a further stage
must be added after cardiac phase estimation that makes use of the rotation-
equivariant feature set (§3.2.4).

Experience suggests that it is not necessary to build new decision forests for
the task of orientation prediction. Rather, the clustering of the training data
that results at the end of the phase prediction forest is sufficient to give good
results for orientation prediction, even though it is not optimised for this purpose.
Therefore, after a phase prediction forest has been trained, an individual orientation
prediction model is fitted to the data in each leaf node2 based on a single feature
from the equivariant set, AJ,K,M . For each data point the offset angle, δ, between
the orientation label si and the jth equivariant feature aj is calculated as:

δij = aj − si (4.17)

A von Mises distribution (µc,κc) of this offset angle is then fitted across all
the datapoints i in the leaf node for each feature j of rotation order one, and
choose the feature j∗ that has the largest concentration parameter κ. Then, at
test time, the PDF at each leaf node, n, is calculated using this chosen feature
and its von Mises distribution

p(s) = V(aj∗ − s | µ, κ) (4.18)

If a single output prediction is required, the von Mises distributions from the leaf
nodes of the different forests are combined using the same approach as Equation 4.16.

2to continue the established tradition of arboreal terminology it might be helpful to think of
this as an epiphytic distribution, as it is placed on top of the existing tree structure but does not
influence its training.
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4.5 Implementation Details

A bespoke implementation of the random forests algorithm was developed using
the C++ programming language and used in all experiments in this thesis. The
implementation uses OpenMP directives for parallel execution with multiple threads
and permits on-the-fly feature calculations in order to avoid evaluating unnecessary
features. It also uses code templates in order to use the same core software classes
to implement the various specialisations of the random forests algorithm. The
source code for the implementation is publicly available3.

3https://github.com/CPBridge/canopy

https://github.com/CPBridge/canopy
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This chapter describes experiments to evaluate predictions of the heart state
variables (visibility h, position x, orientation θ, viewing plane v, and cardiac phase
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φ) from each frame of a video in isolation (framewise predictions). The rotation-
invariant feature (RIF) method in Chapter 3 is tested and compared to a similar
method using traditional rectangular filter feature sets. Some of the results in this
chapter formed part of an article in Medical Image Analysis [163]. The results
here expand upon that article by considering the effect of further parameters (such
as the composition of the random forest models), and performing a comparison
of RIFs with more standard rectangular features.

First, the evaluation metrics used to assess the predictions of each of the
different variables are introduced in §5.1, Then, the cross-validation methodology
used is explained in §5.2. Then details of the models used for the RIF (§5.3)
and rectangular filter (§5.4 and §5.5) experiments are presented. Finally, results
are presented and discussed in §5.6.

5.1 Evaluation Metrics

The full framework estimates values for visibility h, position x, orientation θ, viewing
plane v, and cardiac phase φ from each frame. Consequently, a number of different
metrics are used to compare the test results to the ground truth annotations:

Detection Error The heart is considered to be correctly detected if the distance
between the predicted location (xt) and the ground truth annotation is less
than 0.25R, where R is the annotated radius, and the predicted view label vt
matches the ground truth annotation. The detection error is defined as the
proportion of those frames in which the heart was annotated as being visible
where the heart was not correctly detected (as defined above). Frames where
the heart was annotated as not visible did not affect the value this metric,
but are considered in the false positive rate metric.

Orientation Error The orientation error in a single frame is defined using the
following circular distance metric between the estimated and ground truth
orientation values (respectively θt and θ∗t ):

1
2 (1− cos (θt − θ∗t )) (5.1)

This value is averaged over those frames that were correctly detected (as
defined above), since the orientation error for an incorrectly detected frame is
meaningless. A value of 0.0 would indicate that all orientation values matched
exactly, whereas a value of 1.0 would indicate that all estimated values were
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wrong by exactly π rad (or 180°). If the estimates were random, the expected
value for the orientation error averaged over a large number of frames would
be 0.5.

Ground Truth Position Orientation Error This is the same as the orientation
error metric except that the orientation is estimated at the ground truth
position and using the ground truth class label for the heart rather than the
position and view label predicted by the detection stage. This allows the
orientation prediction stage to be evaluated independently of the detection
and classification stages.

Cardiac Phase Error This is defined exactly as for the orientation error but
between the estimated and ground truth cardiac phase, φ, values.

Ground Truth Position Cardiac Phase Error This is the same as the cardiac
phase error metric except that the cardiac phase is estimated at the ground
truth position and using the ground truth class label for the heart (and at the
ground truth orientation in the case of the rectangular filters case) rather than
the position and view label (and orientation) predicted by the detection stage.
This allows the cardiac phase prediction stage to be evaluated independently
of the detection and classification stages.

True Positive Rate This is defined as the proportion of those frames containing
the heart (according to the manual annotation) in which the heart was detected
within 0.25R of the ground truth annotation, regardless of the detected class
label.

False Positive Rate This is defined as the proportion of frames not containing
the heart in which a heart detection was made. In this case, frames where
a detection was made but where the heart was annotated as ‘obscured’ are
considered as false positives.

‘Generous’ False Positive Rate As above except that frames where a detection
was made but where the heart was annotated as ‘obscured’ are not considered
as false positives.



76 5.2. Cross-Validation Procedure

5.2 Cross-Validation Procedure

Due to the relatively small number of subjects in the dataset (§1.5), all experiments
in this thesis (in this chapter and in Chapters 7 and 9) were conducted using a
leave-one-subject-out cross-validation. In each cross-validation fold, all videos from
one of the 12 subjects were removed from the dataset and the videos from the
remaining 11 subjects were used to train all the models. This set of models was
then tested on the videos from the left-out subject. In this way, each video is
tested once in just one of the cross-validation folds. The presented results are the
averaged results from each video tested in this manner. Furthermore averages for
each evaluation metric are performed first across the frames in each video, and
then across videos in the dataset, meaning that each video is given equal weight in
the average regardless of its length. This prevents the performance on the longest
videos in the set dominating the results.

5.3 Framewise Predictions Using Rotation-Invariant
Features

This section describes the process used to obtain an estimate of the complete state
of the heart from a single frame using models based on RIFs.

5.3.1 Models Used

The following models are used for framewise predictions using RIFs:

Detection and View Classification Forest (RIFDetection): This is a classifi-
cation forest (§4.2) with an output space consisting of the three viewing plane
labels and a background label (abbreviated BG) L = {BG, 4C,LVOT, 3V},
and thus is used to detect the heart and its viewing plane. This is trained
using a set of labelled heart patches, and a set of random non-heart patches
chosen from the video dataset. The classification forest is invariant to the
orientation of the heart by virtue of the choice of features. It is also trained
with a training set drawn from all points in the cardiac cycle, and as such
should be relatively robust to the image variation that it introduces.

View-Specific Cardiac Phase Regression Forests (RIFPhase): These are cir-
cular regression forests (§4.3) trained to give a continuous prediction of the
cardiac phase value from the patch appearance. There is one such forest
model for each of the three viewing plane classes, and each forest is trained
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Symbol Value Unit Description
Nnodemin 50 - number of training data in a node below which a leaf

is declared
Gmin,c 0.5 bits minimum value of the information gain function for

classification forests, below which a leaf is declared
Gmin,φ 0.01 - minimum value of the information gain function

for circular regression forests, below which a leaf
is declared

λbag 0.5 - fraction of the training set used to train each tree
Rtrain 30 pixels radius of the rotation-invariant basis functions

Table 5.1: Training parameters

using training data belonging exclusively to that class. They are invariant to
orientation by virtue of the choice of features.

Orientation Regression Models (RIFOri): An orientation regression model (§4.4)
is attached to each leaf node in each of the RIFPhase forests. It is trained
using only the training data that arrive in the leaf node it is attached to.

5.3.2 Training

The models were trained on each cross validation fold of the database described
in §1.5. From the videos in the fold’s training partition, a training set of image
patches was created containing 5,000 image patches of the heart in each of the
three viewing planes and an equivalent number of ‘background’ patches, selected
randomly from non-heart areas of the frames in the dataset. This gives a total of
30,000 training patches (15,000 positive patches containing the heart and 15,000
background patches). Each positive image patch is circular and is centred at the
annotated heart centre with the annotated radius as its radius. Background patches
are also circular, have a random centre chosen such that the background patch
centre is at least 0.3r from the annotated heart centre (if any) in the frame, where
r is the annotated heart radius, and at least r from the edge of the ultrasound fan
area in order to ensure that the entire patch sits within the valid image region.

The fixed training parameters were chosen empirically to give good results
and are shown in Table 5.1.

All these models are trained using some derived set of RIFs of a certain basis
size Rtrain. Before the feature extraction process began, the training patches were
resized with a scale factor of Rtrain/r such that radius of the training patch matched
the fixed basis size for the feature extraction. The number of features tested at
each split node was set to a quarter of the total number of features available.
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5.3.3 Testing

As discussed in §1.4.3, the approximate size of the heart in the image is assumed to
be known at test time and described by the radius Rtest. The process for predictions
in a single frame using RIFs (Chapter 3) consists of the following stages:

1. The input frame is resized by a factor of Rtrain/Rtest such that the radius of
the heart area in the image features matches the basis function radius used to
calculate the features that were used to train the model.

2. Each pixel that is at least a distance Rtest from the edge of the ultrasound fan
area in the resized image is passed into the RIFDetection forest. After this
step, the pixel with the highest probability of each of the non-background
classes is found. The predicted viewing class v is then chosen to match the
class of whichever of these pixels has the highest prediction score. In order
to refine the position and smooth out local variations in prediction score,
the location of the pixel with the highest prediction score then serves as the
starting point of a mean-shift procedure (with window size 30 pixels) that
operates on the prediction score values and gives a refined predicted position
x.

3. The probability value of the winning view class at the predicted location from
the previous step is thresholded using some predetermined threshold τ . If the
probability value is lower than the threshold, the heart is determined to be
hidden (h = 1), otherwise it is determined to be visible.

4. The chosen pixel location is passed into the RIFPhase forest that matches
its viewing plane label. The forest outputs a point estimate of the cardiac
phase (the mean parameter of the von Mises distribution after combining the
leaf nodes as in Equation 4.16), which is used as the estimated cardiac phase
value for this frame.

5. The RIFOri model attached to each leaf node reached in the previous step is
used to give an orientation estimate, the estimates from each tree are then
combined to give a single orientation estimate for the frame.
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5.3.4 Shorthand Names for RIF Feature Sets

Throughout the remainder of this thesis, a shorthand notation will be used to
identify feature sets based on RIFs. This includes an abbreviated name of the image
representation (int for intensity, grad for intensity gradient and motion for motion),
followed by the J , K and M parameters, in that order (though the M parameter
is omitted for intensity as it is a scalar representation and therefore there is no
Fourier orientation histogram expansion), and finally a description of the feature
set as including basic, coupled or extra features. Multiple image representations
may be used and are represented by concatenating the names of the feature sets

So for example, int43_basic represents a basic feature set (no coupled features)
using intensity features with J = 4 and K = 3, whereas grad432motion432_extra
represents a feature set using extra feature coupling and intensity gradient and
motion image representations, both using J = 4, K = 3, and M = 2.

5.4 Rectangular Filter Feature Sets

In order to compare the performance of the RIFs with a more traditional method,
the experiments were repeated using a different set of models trained on ‘rectangular’
features. Such features have been used extensively in computer vision in highly
influential works such as those of Viola and Jones [21, 168], and Shotton et al. [72,
169] and in the latter works were found to work well as weak learners within learning
algorithms based on random forests. They have also been used in several works
on ultrasound image analysis, for example [104, 107–112, 114–118, 164], and other
medical image analysis applications [73]. They have sometimes been referred to as
Haar or Haar-like features due to a loose connection with Haar wavelets.

The definition of the features used in this is shown in Figure 5.1. At training
time, random candidate features are chosen by choosing type, position, width,
height and (where relevant) offset parameters such that all rectangles fit within
the square R × R detection window.

At test time, the features may be evaluated very efficiently by first finding the
integral image of the input image. Thereafter, the sum of pixels under a given
rectangular region may be evaluated using just a few addition and subtraction
operations using certain elements of the integral image, regardless of the size
of the region [21].

The method of Zhu et al. [25] is used to extend this framework to vector-valued
image representations (motion and intensity gradient fields). The orientation of
each pixel is first discretised into one of Nb orientation bins, and weighted according
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Figure 5.1: Definition of rectangular features. There are eight types of rectangular
features, labelled A to H. Each type consists of a set of 1, 2, 3, or 4 rectangular regions
laid out as in the diagram. The feature value is equal to the sum of the pixel values under
the white rectangles minus the sum under the grey rectangles.

to its magnitude. This gives a set of Nb scalar-valued images. Each feature
value selects just one randomly chosen orientation bin, and uses the rectangular
features exactly as before.

5.5 Framewise Predictions Using Rectangular Fil-
ters

The procedure for predictions in a single frame using the rectangular features
is similar to that outlined in §5.3. However in this case the features are not
rotation-invariant and therefore a number of different models are trained for a
number of orientations.

5.5.1 Models Used

The procedure for predictions in a single frame using the rectangular features
makes use of the following models:

Detection and View Classification Forests (RECDetection): Like in the RIF
case, these are classification forests (§4.2) with an output space consisting of
the three viewing plane labels and a background label (abbreviated BG) L =
{BG, 4C,LVOT, 3V}. However these forests are not invariant to orientation
and therefore there is a set of No such forests, trained to detect and classify
the heart at a set of equally spaced orientations in the range [0, 2π). These
orientations are referred to as θtrain,n for the nth orientation.
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View-Specific Cardiac Phase Regression Forests (RECPhase): These are cir-
cular regression forests (§4.3) trained to predict the cardiac phase given an
image patch containing a certain viewing plane in a certain orientation. As
such there is one model for each of the classes in each of the orientations
giving 3No such forest models.

Note that there is no separate orientation regression model, as the estimated
orientation arises naturally as a results of performing the detection step at multiple
orientations (see §5.5.3).

5.5.2 Training

The models based on rectangular filters were trained on each of the cross-validation
folds. The training procedure and parameters were identical to those described
in §5.3.2 except for the differences described below:

• The image patches in this case were square image patches (rather than circular
patches) of side length 2Rtrain.

• Before feature extraction began, the patches were rotated such that the ground
truth orientation of the heart matched the training orientation for the forest.
For the phase prediction forests, a random offset angle in the range [− 2π

2No
, 2π

2No
]

was was then applied to each patch. This means that the forest is trained to
predict the cardiac phase for a heart with any orientation within the relevant
bin.

• The total number of features tested at each split node was set to a fixed value
of 3,000.

5.5.3 Testing

The testing procedure using random forest models is described below. It is similar
to the one used for RIFs (§5.3.3) except that the orientation is now determined
by applying the classification models trained at each orientation and choosing the
one that gives the highest detection score.

1. The input frame is resized by a factor of Rtrain/Rtest such that the radius of
the heart area in the image features matches the basis function radius used to
calculate the features that were used to train the model.
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2. Each pixel that is at least a distance Rtest from the edge of the ultrasound fan
area in the resized image is passed into each of the No RECDetection Forests.
For each of the combinations of viewing plane and orientation, the pixel with
the highest detection score from the output of the detection forest is chosen
as a candidate detection. Out of these, the orientation and viewing plane
with the highest scoring candidate is chosen as the predicted viewing plane
and orientation combination.

3. The position prediction is then refined with mean shift, as in the rotation-
invariant case.

4. The orientation prediction is refined by performing a weighted average of the
orientations of the maximum scoring detector and the two either side of it,
where the weights are the detection scores evaluated at the refined position
estimate. This gives a continuous orientation prediction from the discrete
models.

5. The cardiac phase prediction is then performed using the RECPhase forest
for the correct viewing plane and the highest scoring orientation. The forest
outputs a point estimate of the cardiac phase (the mean parameter of the von
Mises distribution after combining the leaf nodes as in Equation 4.16).

5.5.4 Shorthand Names for Rectangular Feature Sets

Throughout the remainder of this thesis, a shorthand notation will be used to
identify feature sets based on rectangular filter features. This begins with rec

to indicate that rectangular filters are used. An abbreviated name of the image
representation (int for intensity, grad for intensity gradient and motion for motion),
follows. For vector representations, the number of orientation histogram Nb then
follows. Multiple image representations may be used and are represented by
concatenating the names of the feature sets.

So for example, rec_int represents a set using intensity features, and rec_gradmotion_8

represents a set using intensity gradient and motion image representations, both
using Nb = 8 orientation histogram bins.
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5.6 Results

5.6.1 Calculation Speeds for Rotation-Invariant Features

To investigate the efficiency of calculation methods for the RIF extraction, the
per-frame calculation times were measured and averaged across every video in the
database using a number of different calculation methods. Each test was conducted
with an RIFDetection forest model using gradient and motion features with the
grad322motion322_extra RIF feature set consisting of Ntrees = 16 trees and a
maximum depth of Dmax = 10 levels, and an RIFPhase forest model Ntrees = 32
trees and a maximum depth of Dmax = 8, representing a typical set of values that
achieve high accuracy (see later sections).

The calculation methods are defined by two characteristics:

Raw Feature Calculation Method The method by which the raw RIFs are
calculated. The spatial method uses entirely spatial (image) domain con-
volution operations at the individual points when requested by a node in
one of the forest models, whereas the freq method uses frequency domain
multiplications (§3.5) for the entire image, and stores the result for future
queries. The auto method determines automatically for each query from a
node, which of the above methods will be fastest for the requested number
of points. The intuition is that using spatial convolutions may be faster for
cases where the raw feature is required at only a few image locations, but that
the frequency domain method will be faster when a large number of points
are required. The threshold number of requested points is set automatically
based on empirical measurements of the speed of each method on images of
the relevant size at the start of a test of a video.

Spatial Feature Memo-isation When the raw features are calculated using the
spatial method, they may either be calculated for the specific image locations
required and then discarded, or stored such that they may be used again later
if the same feature is required at the same image location. The latter option
may reduce redundant calculations, but there is an overhead associated with
storing the calculated features in a thread-safe manner. Note that it only
makes sense to use memo-isation with the spatial and auto method.

Note that these calculation methods do not affect the values of features calculated,
except due to negligible numerical effects resulting from finite precision arithmetic.
However, they do affect the speed at which the calculations are performed.
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Figure 5.2: Average calculation times per frame for the different calculation methodolo-
gies. The blue bar represents the mean time and the red error bars show one standard
deviation, in both cases calculated over each video in the dataset.

Method Average Calculation Time (ms)
spatial 516.4

spatial + memo 149.1
freq 13.5
auto 13.4

auto + memo 13.5

Table 5.2: Average calculation times per frame using different calculation methods.

The results of the experiment are shown in Figure 5.2 and Table 5.2. It can clearly
be seen that the use of the frequency domain calculations rather than spatial domain
calculations (as used by Liu et al. [159]) results in a very significant speed up in the
calculation of RIFs. Furthermore, it is clear that as a result of this and the various
other improvements outlined in §3.4, it possible to use RIFs and random forests to
construct a powerful classifier that can run at several tens of frames per second on
desktop hardware. The precise calculation times depend on a number of factors,
including the number of trees in the forest, their depth, the image representation
and the size of the image. Some of these factors will be investigated in later sections.

It is also clear that the auto calculation method results in very similar calculation
times to the plain freq. This suggests that, although the auto method chooses the
fastest method (spatial or frequency) for a given node, this does not necessarily
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mean that this is the fastest method for the entire forest model. In many cases it
may happen that the feature extraction routine chooses the spatial method at a
tree node that requests a small number of image locations, but later on another
node requires the same raw feature at a number of other locations, in which case it
may have been faster to have used the frequency domain calculation for the first
node’s request. This effect is more pronounced with larger, deeper forests.

Another factor is that the speed difference between the spatial and frequency
methodologies is so great that the automatically-determined threshold for using the
frequency domain method is very low. Typically this value is a few dozen image
locations. Consequently, there are only a few cases where the spatial method is
chosen, and therefore the effect on the overall calculation time is negligible.

Furthermore Figure 5.2 shows that the memo-isation of spatial raw feature
calculations significantly improves the calculation time, however not enough to
make it competitive with the use of frequency domain calculations.

5.6.2 Detection Performance

In this section, the performance of the different feature detection algorithms in
detecting the heart and classifying its view is considered. This was assessed by
experiments in which the feature set, the number of trees in the random forest model
(Ntrees), and the number of levels in the random forest model (Dmax) were varied.

Each model was tested using the cross-validation methodology described above,
and evaluated using the Detection Error metric. The parameter values in Table 5.1
were used to train the forest models. For testing the RIF models, frequency domain
feature extraction with automatic coupling was used. For rectangular features,
the number of orientations was fixed at No = 8.

Figure 5.3 shows the trade-off between detection accuracy and calculation time
for a number of different feature sets using 16 trees and 10 levels. The x-axis shows
the detection error (as defined above) expressed as a percentage, and the y-axis
shows the time taken per frame, in milliseconds. Consequently, the ‘ideal’ detection
algorithm (fast and accurate), would appear in the bottom left of the plot.

Whilst the specific results vary with the number of trees and levels, the trend
from Figure 5.3 is similar to that with other parameters. It can be seen that in
general there is a trade-off between fast feature extraction and good classification
performance. For both RIFs and rectangular features, using image-intensity-based
representations gives very fast feature extraction, but generally much lower detection
performance than gradient-based representations.
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(a) RIF feature sets (only ‘coupled’ sets are shown).
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(b) Rectangular feature sets.

Figure 5.3: Detection error and calculation time for RIF (5.3a) and rectangular (5.3b)
feature sets, shown using forest models (RIFDetectionRECDetection) with Ntrees = 16
trees and a maximum of Dmax levels per tree.
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Figure 5.4: Comparison of detection error using the ‘basic’,‘coupled’ and ‘extra’ RIF
feature sets for a number of different image representations and J , K and M parameters.
In each case, the error value shown is the minimum value over all the combinations of
trees and levels that were tested.

The forest models using RIFs are significantly more accurate than those using
rectangular features, which demonstrates the advantage of building rotation invari-
ance into the feature set. It is likely that using forest models trained at a larger
number of orientations No would improve the performance of the rectangular filters,
but this would accordingly increase the test time. Note that another important
disadvantage of the rectangular filters is the dramatically longer training time due
to two factors: the need to train several forest models, one for each orientation,
and the larger number of features to consider at each node.

Within the RIF sets, increasing the J , K or M parameters increases the
computational time due to the need to calculate more raw features. It can also
be seen that the increases in detection performance from larger feature sets drop
off quite quickly. Above around J = 3, K = 3, M = 2, there is little further
improvement in detection performance.

The bar chart in Figure 5.4 compares the performance of RIFs using the ‘basic’,
‘coupled’ and ‘extra’ feature sets. The results suggest that the addition of the
coupled features significantly increases the performance of the classifier. The effect
of introducing the ‘extra’ feature set is not particularly clear, the results suggest
a small and inconsistent improvement over the coupled set.
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Within the rectangular feature sets, the accuracy tends to increase with the
number of bins in the orientation histogram Nb, suggesting the larger, more detailed
feature sets aid in classification. There is little resulting change to the run
time because the complexity of the binning procedure does not depend upon
the number of bins.

Figure 5.5 shows how the detection accuracy depends on the number of trees
and the maximum number of levels in each tree for a promising feature set using
RIFs and rectangular features respectively. Other features sets show a similar trend.
As expected, increasing the number of trees and the number of levels generally
improves the detection accuracy but this saturates at some point in both cases.
Also, a larger number of trees or levels reduces the speed of the detection. The
plots suggest that values around 32 trees and 10 levels represent a good compromise
between accuracy and efficiency, but this varies on the feature set and the relative
importance of speed and accuracy.

5.6.3 View Confusion Performance

Figure 5.6 shows confusion matrices for select feature sets and forest parameters,
again chosen to show the general trends. These measure the ability of the detection
forests to discriminate correctly between the three views of the heart. In these
figures, any detection further than the distance threshold of 0.25R from the ground
truth annotation is considered to be a ‘miss’, and only detections within this
threshold are considered for calculating the confusion matrix between the three
view classes. Additionally Cohen’s kappa statistic is used to measure the agreement
between the automatic output and the manual ground truth within the three heart
classes only (i.e. excluding missed detections and frames in which the heart is
hidden). The confusion matrices show that the 3V view is the most commonly
missed view. This is most likely due to the relatively indistinct appearance of the
view (it can appear quite similar to acoustic shadowing artefacts) and the large
amount of intra-class variation arising from variation in probe position, partly
due to the fact that several distinct views have been grouped together to form
the 3V category used in this thesis (§1.4.4).

Furthermore, there is significant inter-class confusion between the 4C and LVOT
views. This is also unsurprising given the similarity in appearance between the
two views, and the existence of an ambiguous region when the probe is located
above the 4C and below the LVOT such that a very small part of the aorta
and the aortic valve is visible.
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(a) The grad322motion322_extra feature set.

(b) The rec_gradmotion_10 feature set. The points relating to 64 trees are off the scale
of the plot.

Figure 5.5: Detection error and calculation time as the number of trees in the
RIFDetection/RECDetection models and the maximum number of levels in the trees are
varied. Each coloured line represents a certain number of trees(Ntrees) in the forest model,
and each point on the represents a certain maximum number of levels (Dmax, written
next to the point).
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(a) int66_extra, κ = 0.52.
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(b) rec_int, κ = 0.62.
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(c) grad322_extra, κ = 0.75.
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(d) rec_grad_10, κ = 0.70.
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(e) grad322motion322_extra, κ = 0.78.
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(f) rec_gradmotion_10, κ = 0.73.

Figure 5.6: Confusion matrices for a number of feature extraction methods. Tests were
performed using Ntrees = 32 and Dmax = 10.
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5.6.4 Rejection of Negatives

As well as detection performance, it is also important that the classifier is able to
correctly reject those frames that do not contain a view of the heart. This is done
via a threshold on the detection score, as described in §5.3.3.

Figure 5.7 shows the true positive rate and false positive rate (§5.1) as this
threshold is varied. The resulting plot is similar to a receiver operating characteristic
(ROC) curve, but is not exactly an ROC because the location of the detection
is also considered in determining the true positives. Consequently the line does
not intersect the top right corner of the axes, because no matter how low the
threshold is, the true positive rate will not reach 1 unless the within-frame detection
is also perfect (this is a consequence of the fact that the algorithm will only output
at most one detection per frame).

It may be seen that performing rejection based on a simple thresholding of the
detection score performs quite poorly. In order to achieve a high true positive rate,
a high false positive rate must be accepted. The results are improved to some extent
if the ‘generous’ false positive rate metric is considered. This does not penalise the
algorithm for making detections in borderline negative cases (those annotated as
negative but close to being positive). It is therefore clear that such cases are the
cause of some, but not all of the false positives. This motivates the development
of a more sophisticated way of determining when the heart is not visible in the
image. This is will be explored further in Chapter 6.

5.6.5 Orientation and Cardiac Phase Estimation Perfor-
mance

The orientation and cardiac phase estimation performance was analysed in a set of
experiments in which the ground truth position orientation error was calculated
when the feature sets and number of trees and levels in the relevant forest models
were varied. The training parameters were as shown in Table 5.1, and for testing the
RIF models, frequency domain feature extraction with automatic coupling was used.

In these experiments, the orientation and cardiac phase estimation was performed
at a single location (the ground truth position). Consequently, the speed of the
estimation calculation is not a good indicator of the likely speed when estimates
are needed at a number of points, as will be required for the particle filtering
framework in later chapters. Therefore, the speed of the algorithm was not
considered at this stage.
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Figure 5.7: True positive rate versus false positive rate (solid lines) and ‘generous’ false
positive rate (dashed lines) for a selection of feature sets. Testing was performed with
Ntrees = 32 and Dmax = 10.
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Figure 5.8: Ground truth position cardiac phase error for a number of RIF feature sets.
In each case, the value show is the minimum value over all the combinations of trees and
levels that were tested.

The bar plot in Figure 5.8 shows the ground truth position cardiac phase error
for some of the more promising RIF feature sets, and compares the ‘basic’, ‘coupled’
and ‘extra’ features sets. Generally it is observed that the circular regression trees
are able to give reasonable regression performance on a challenging problem. The
better feature sets are able to achieve an average normalised error of 0.15, which
corresponds to just over one tenth of a cycle.

It can be seen that the inclusion of motion features significantly improves the
cardiac phase estimation over gradient features alone. This is to be expected, as the
motion patterns of the heart walls and valves are key indicators of the cardiac phase.
Again it is observed that the use of the ‘coupled’ feature set improves the performance
with respect the using the ‘basic’ features alone, but that adding the ‘extra’ features
does not significantly change the performance. Note that because the orientation
estimation uses the equivariant feature set, it is not meaningful to compare the
orientation estimation performance when using the ‘basic’, ‘coupled’ and ‘extra’ sets.

Figure 5.9 shows results for cardiac phase estimation when different numbers
of trees and tree levels are used, for a few feature sets. They suggest that for all
models, increasing the number of trees improves the prediction performance, and
this effect reaches saturation near 64 trees. However changing the number of tree
levels (above 8) makes very little difference to the results. This might be due to
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Figure 5.9: Ground truth position cardiac phase error as the number of trees in the
RIFPhase/RECPhase model varies. For each number of trees (Ntrees, shown in the legend),
the cardiac phase error is plotted at different values for the maximum numbers of levels
(Dmax ∈ {8, 10, 12, 14}, not labelled for legibility).
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Figure 5.10: Ground truth position orientation error as the number of trees in the
RIFPhase model (containing the RIFOri regressions models) varies. For each number of
trees (Ntrees, shown in the legend), the orientation error is plotted at different values for
the maximum numbers of levels (Dmax ∈ {8, 10, 12, 14}, not labelled for legibility).

the fact that the other stopping criteria (§4.1.1) are terminating the training at
lower number of levels. It is again clear from Figure 5.9 that the introduction
of motion features dramatically improves cardiac phase prediction performance.
Also, the rectangular feature sets in general give better cardiac phase estimation
performance than the RIF feature sets. This is likely due at least in part to the
fact that the cardiac phase estimation model is trained on a known orientation,
which in these experiments was assumed to be known exactly at test time (in order
to investigate the cardiac phase estimation process separately from the detection
process), whereas the RIF models are trained to be rotation-invariant and so cannot
use this information. The relative performance of the two when an estimated
orientation is used is investigated in Chapter 7.

Figures 5.10 and 5.11 show the orientation error for a selection of feature sets and
forest model arrangements. With a large number of trees, the RIFs and rectanglar
features give comparable performance at a normalised error of around 0.08, which
corresponds to an angular error of about 30°. The inclusion of motion features
is shown to improve orientation estimation results slightly. Unlike the detection
and cardiac phase estimation tasks, it appears that increasing the number of trees,
Ntrees, above the values tested could result in further improvements to accuracy
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Figure 5.11: Orientation error as the number of trees in the RECDetection models
varies. For each number of trees (Ntrees, shown in the legend), the orientation error is
plotted at different values for the maximum numbers of levels (Dmax ∈ {8, 10, 12, 14}, not
labelled for legibility). Note that unlike Figure 5.10, the orientation estimation at the
estimated heart position (rather than the ground truth position) is used, because the
orientation estimation is a by-product of the detection process.

in the RIF case. This suggests that performing orientation regression based on
the complex phase of a single RIF is rather noisy. Again, altering the number of
levels in the trees, Dmax, is seen to have only a small effect.

5.7 Conclusions

This chapter has presented results for estimation of the variables of interest on
a frame-by-frame basis. It was found that the computational efficiency of RIF
calculation is dramatically improved by using frequency-domain calculations, making
it possible to analyse entire images at around 13 ms per frame, which is fast enough
for video analysis tasks. It has shown that the combination of RIFs and random
forest models is able to give reasonable and regression performance at these high
frame rates, with the best models able to correctly localise and classify the heart
views in around 65% of frames, estimate the cardiac phase value with an average
error of about 0.1 cycles, and predict the orientation with an average error of around
30°. It was found that RIFs based on both image intensity gradient and optical-flow-
based motion features tended to give better performance across all measures than
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those based on image intensity or intensity gradient alone. Furthermore it was shown
that using coupled RIFs is highly beneficial for the accuracy of the estimates, but
additionally using the ‘extra coupled’ features does not significantly alter the results.

The above results also show that the circular regression forest model introduced
in Chapter 4 is able to give reasonable estimates of the circular output variable
for the challenging problem of cardiac phase estimation task.

The comparison between the RIFs and rectangular features suggest that RIFs
perform better for the detection task, approximately the same for the orientation
estimation task, and worse for the cardiac phase prediction task than the more
common rectangular features. However the latter assumes that the true position
and orientation is known exactly as test time, which is unrealistic is practice. This
is explored further in Chapter 7.

Although results in this chapter are reasonable for the challenging nature of the
task, there is significant room for improvement in the results by taking advantage
of the relationships between nearby frames. Chapter 6 will present a method for
doing this, which uses the detection and regression models presented in this chapter
as a basis for particle filtering framework.
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across multiple frames of video in order to use contextual information and give
consistent predictions. An earlier version of this work is described in an article
published in Medical Image Analysis [163]. That paper did not use the partitioning
of the particle filtering framework.

6.1 Introduction

The experiments performed in Chapter 5 were limited to framewise predictions,
i.e. treating each frame as entirely independent from all other frames in the video.
However, this assumption of independence between frames is very naïve, as clearly
there are very strong relationships between the values of the state variables in
consecutive frames at typical clinical imaging frame rates. The position and
orientation of the heart in the image is unlikely to change significantly between
consecutive video frames. The timing of transitions between the different viewing
planes is unpredictable, but they will be accompanied by predictable changes
in the centre and orientation of the heart (because these are defined differently
in different viewing planes, see Figure 1.4). Furthermore, for a typical, healthy
heart the cardiac phase advances between frames at a fairly constant rate within
a known range of anatomical plausibility.

Given how ambiguous and difficult to interpret a single video frame can be,
it is logical to use this prior knowledge to inform the estimates in each frame.
Furthermore, the most principled approach to this is to use a probabilistic model to
account, explicitly, for the inherent uncertainty in both the system dynamics and
the interpretation of images, and therefore provide robustness to this uncertainty.
The rest of this chapter reviews the theory of sequential Bayesian filtering and
different ways to implement it (§6.2 and §6.3), and then describes a particle
filtering procedure for estimating the state variables from ultrasound videos of
the fetal heart, beginning at §6.4.

6.2 Sequential Bayesian Filtering

Bayesian recursive estimation or sequential Bayesian filtering is a standard formu-
lation for online estimation of the state of a dynamic system given a probabilistic
model of the system’s behaviour and probabilistic measurements [170, 171].

The state of a system at a given time point1 t ∈ N0 is assumed to be fully
described by its state vector, st ∈ S at that time point, where S is the state

1the focus here will be on discrete-time systems as the frames of a video are naturally a
discrete-time signal.
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space. The system dynamics can be captured by some state evolution distribution
p(st | st−1) that describes the likelihood of a given state value at time t given the
state value at the previous time-step t− 1, and is conditionally independent of all
measurement information and state values before time t− 1. This is equivalent to
assuming that the system dynamics obey the Markov assumption.

The measurement information at a given time point t shall be denoted zt, and
the measurement information at all time points up to and including time t shall
be denoted z0:t. zt provides information about the value of the state at time t
through some generative measurement distribution p(zt | st) that is assumed to
be independent of all previous measurements and the system dynamics. This
distribution describes the likelihood of seeing the observed measurement given
a certain value of the state

The aim of Bayesian filtering is to maintain a probabilistic estimate of the
state of the system, st, at each time step that takes into account all the previous
measurement information and the constraints imposed by the dynamic model. This
distribution is referred to as the filtering distribution and denoted p(st | z0:t).

Given the two key distributions (the state evolution distribution and the
measurement distribution), Bayesian filtering proceeds by recursively applying
the following two equations at each time step, t:

p(st | z0:t−1) =
∫
S
p(st | st−1) p(st−1 | z0:t−1) dst−1 (6.1)

p(st | z0:t) = p(st | z0:t−1) p(zt | st)
p(zt | z0:t−1) (6.2)

The first of these (Equation 6.1) represents the prediction step. It predicts the
distribution over the state at time t given the state evolution model by marginalising
out the filtering distribution at the previous time-step, resulting in a predicted
distribution p(st | z0:t−1). The second equation (Equation 6.2) is an update step that
adjusts the predicted distribution in order to reflect the measurement information.
The denominator of this expression is constant with respect to st and therefore
in many implementations it is easier to simply note that the filtering distribution
is proportional to the numerator, i.e. that

p(st | z0:t) ∝ p(st | z0:t−1) p(zt | st) (6.3)

and then ensure that the filtering distribution is valid by normalising it afterwards.
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6.2.1 Exact Inference

Although the procedure for Bayesian recursion is simple in principle, there are only
a few situations in which it is possible to implement it in a way that results in an
exact and computationally tractable inference procedure [170].

One such situation is when the state space is discrete, or can be approximated
to sufficient accuracy by a discrete representation. In this case the state evolution
distribution can be represented by a matrix of transition probabilities, and the
model is commonly referred to as a Hidden Markov Model (HMM). The filtering
problem for an HMM may be solved with an algorithm variously known as the
forward algorithm [172] or the histogram filter [170], which is a special case of
dynamic programming in which the integral in Equation 6.1 is a discrete sum.
Whilst an exact solution is always possible in a Hidden Markov Model, the problem
becomes highly computationally intensive when the state is high-dimensional and/or
each state dimension has a large number of possible values.

A second important case where exact inference is possible is the Kalman Filter
for continuous state spaces [170, 172]. This requires that the state transition
model is a linear transformation of the previous state vector with additive Gaussian
noise, and the measurement distribution is a point estimate corrupted by additive
Gaussian noise. Under these conditions, the filtering distribution is itself Gaussian,
and its parameters can be updated in closed form given the parameters of the
state evolution and measurement models. This is a consequence of the fact that
Gaussian distributions, unlike most probability distributions, are closed under the
operations of multiplication and convolution.

The Kalman Filter results in a simple and highly efficient inference algorithm for
continuous state spaces. However, the assumptions it makes are very restrictive in
many real-world situations. Of particular importance is the fact that the Gaussian
distribution cannot represent multi-modal distributions, but in practice many state
evolution and measurement distributions are naturally multi-model, especially in
computer vision and image analysis. For example, when searching an image for
an object of interest, typically a detector will assign a low score to most of the
image but a high score to a small number of image locations.

6.2.2 Approximate Inference

In many cases, exact inference for sequential Bayesian filtering is not possible or
prohibitively expensive in terms of computational demands. Therefore a range of
approximate inference methods are used in practice.
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The restrictive assumptions of the Kalman filter have lead to generalisations
of the Kalman filter that relax some of these assumptions. The Extended Kalman
Filter and Unscented Kalman Filter are popular models that approximate the
Kalman Filter for systems whose state evolution models are non-linear [170, 172].
However the assumptions of Gaussian filtering distributions and measurement
distributions remain.

The Multiple Hypothesis Tracker assumes that the filtering distribution can be
represented by a mixture-of-Gaussians distribution in which each mixture component
represents one ‘hypothesis’ about the state [173]. Each component functions in
a similar way to an individual Kalman filter [170].

There are also approximate algorithms based on the Kalman filter for tracking
random variables defined on a circular manifold, for example that of Kurz et
al. [174], which is similar to the unscented Kalman Filter.

In addition to the above methods of approximate inference there are stochastic
Monte Carlo methods, which will be the subject of the next section.

6.3 Monte Carlo Inference and Particle Filters

6.3.1 Basic Particle Filters

Monte Carlo methods form a set of widely-used tools for approximate inference in
Bayesian filtering problems [170, 171] due to their high versatility and simplicity
to implement. Such methods do not assume a specific parametrised form for the
filtering distribution but rather represent it as a finite set of weighted samples (known
as particles) drawn from it. Specifically, the filtering distribution is approximated
by the sum of Dirac delta-distributions, δ(·), at locations defined by a set of P
particles, {s(i)

t }Pi=1, s(i)
t ∈ S, and their associated importance weights {w(i)

t }Pi=1.

p(st | z0:t) ≈
P∑
i=1

w
(i)
t δ(st − s(i)

t ) (6.4)

This represents a valid probability distribution provided that w(i)
t ∈ [0, 1] and∑P

i=1 w
(i)
t = 1. As the number of samples, P , increases the particle set more closely

approximates the true filtering distribution.
The basic particle filtering algorithm is the Sequential Importance Sampling (SIS)

algorithm, outlined in Algorithm 6.1. The prediction step (Equation 6.1) proceeds
by sampling a new value for each particle from the state evolution distribution.
This requires that a suitable sampling algorithm exists for sampling from the
state evolution model.
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Input: a particle set {s(i)
t−1}Pi=1 and importance weights {w(i)

t−1}Pi=1 at time t− 1
Output: an updated particle set {s(i)

t }Pi=1 and importance weights {w(i)
t }Pi=1 at

time t

{For all particles}
for i ∈ N1,P do
{Sample from the state evolution distribution}
s(i)
t ← s(i)

t ∼ p(st | s(i)
t−1)

{Update weight according to measurement distribution}
w

(i)
t ← w

(i)
t−1 p(zt | s

(i)
t )

end for

{Find the sum of the updated weights}
Wt ←

∑P
i=1 w

(i)
t

{Re-normalise the importance weights}
for i ∈ N1,P do
w

(i)
t ←

w
(i)
t

Wt

end for
Algorithm 6.1: The Sequential Importance Sampling particle filtering algorithm

The update step (Equation 6.2) proceeds by updating the sample weights
according to the measurement distribution. This does not take into account the
denominator of Equation 6.2, so in order to ensure that the new filtering distribu-
tion represents a valid probability distribution the weights must be renormalised
afterwards to complete the update step.

The performance of Sequential Importance Sampling deteriorates after a few
steps because most of the importance weights become close to zero, and the majority
of the probability mass becomes concentrated on a small number of particles with
large weights. This is known as the degeneracy problem, and is particularly severe if
there is large uncertainty in the state evolution model, because only a few particles
will be close to the peaks of the measurement distribution. The problem is that
although the particle set still represents the correct filtering distribution (in the
limit of infinite particles), it does so with decreasing efficiency. The efficiency of
a particle set is a measure of how many particles are needed to approximate the
distribution [175]. An efficient particle set has many particles concentrated at areas
of high probability and few particles at areas of low probability, or equivalently
has a more equal distribution of weights among the particle set.

This is overcome by adding a resampling step to the SIS algorithm in which
a new particle set is created from the old particle set by resampling particles
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p(st−1 | z0:t−1) ∗p(st | st−1) ×p(zt | st) ∼ p(st | z0:t)

Figure 6.1: Filtering diagram for the basic particle filter following the convention of
MacCormick et al. [175, 176]. The round edged boxes represent distributions in the form
of particle sets. The hexagonal boxes represent operations on each particle in the particle
set: the ‘∗’ represents convolving the particle set with the state evolution distribution
and the ‘×’ represents multiplying the particle weights by the measurement distribution.
The square box containing the ‘∼’ represents the resampling operation across the entire
particle set.

according to their importance weights, and then resetting the weights to a uniform
value. This does not change the distribution that the particle set approximates,
but by concentrating the particles at areas of high probability, it increases the
efficiency with which it approximates it. The resulting algorithm is called the
Sequential Importance Resampling (SIR) algorithm, and is outlined in Algorithm 6.2
and illustrated in Figure 6.2.

Following MacCormick et al. [175], Figure 6.1 shows a schematic representation
of the steps in each iteration of the SIR algorithm.

The disadvantage of the SIR algorithm is that each resampling step reduces
the diversity of the particle set, as many particles are identical immediately after
the resampling step (Figure 6.2). Some formulations do not resample on every
step, but resample only when the variance of the particle weights exceeds some
threshold [170] in order to avoid reducing the diversity of particles unnecessarily.

6.3.2 Conditional Random Field Filters (CRF-Filters)

Notice that in §6.3.1 the measurement distribution p(zt | st) has the form of a
generative model, i.e. one that models the likelihood of the observed measurement
given a certain value of the state. This is a natural formulation for many simple
applications in which the measurement process can be modelled straightforwardly,
for example when a direct point measurement of the state value is corrupted
by a simple noise process.

However in many situations the relationship between the measurement infor-
mation and the state value that gave rise to it is much less straightforward. For
example, when tracking an object in a video stream some detection procedure
must first be applied to the image, which might result in multiple hypotheses for
the object’s location in the image. Furthermore there is likely to be ‘clutter’ or
information in the image that does not depend on the state of the object of interest.
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Figure 6.2: Illustration of a single time-step of the SIR filtering algorithm for particle
filtering. Here there is a 2D state vector s = [s1, s2], a Gaussian state evolution distribution
and an axis-aligned Gaussian measurement distribution representing a point estimate
corrupted by noise. In all images, the current particle set is represented by the red
particles and the blue particles (where shown) represent the previous particle set. The
radius of the circle representing a particle is proportional to its importance weight.
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Input: a particle set {s(i)
t−1}Pi=1 and importance weights {w(i)

t−1}Pi=1 at time t− 1
Output: an updated particle set {s(i)

t }Pi=1 and importance weights {w(i)
t }Pi=1 at

time t

{For all particles}
for i ∈ N1,P do
{Sample from the state evolution distribution and store in a temporary list}
ŝ(i)
t ← ŝ(i)

t ∼ p(st | s(i)
t−1)

{Update weight according to measurement distribution}
w

(i)
t ← w

(i)
t p(zt | ŝ(i)

t )
end for

{Find the sum of the updated weights}
Wt ←

∑P
i=1 w

(i)
t

{Re-normalise the importance weights}
for i ∈ N1,P do
w

(i)
t ←

w
(i)
t

Wt

end for

{Resample the particle set}
for i ∈ N1,P do
{Draw a resampling index for this particle according to importance weights}
j ← j ∼ D(j | wt)
{Copy the particle with this index from the temporary list}
s(i)
t ← ŝ(j)

t

end for

{Reset the weights}
for i ∈ N1,P do
w

(i)
t ← 1

P

end for
Algorithm 6.2: The Sequential Importance Resampling particle filtering algorithm

In these cases, creating a full generative model for the image given the state
p(zt | st) is unnecessary and likely to be highly complex. Instead a more natural
approach is to construct a discriminative model p(st | zt) that directly predicts
the likelihood of a certain state value given the observed measurement. The
latter approach allows the design of the model to focus on the relevant task –
that of predicting the state given the image – rather than unnecessary modelling
of the full imaging process.

To reflect this change of approach, Limketkai et al. [177] introduced the
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Figure 6.3: Graphical structures of (a) a sequential Bayesian filter and (b) a conditional
random field filter. The former is a directed graphical model with the edges representing
valid conditional probability distributions. The latter is an undirected graphical model
with non-negative clique potentials defined between the graph nodes [177].

Conditional Random Field Filter (CRF-Filter), named to reflect the analogy with
conditional random field models within image analysis.

The model architecture for the CRF-Filter and comparison with a standard
sequential Bayesian filter is shown in Figure 6.3. The CRF Filter architecture is an
undirected graphical model in which two clique potentials are defined: a prediction
potential ψ(st, st−1), and an observation potential ω(zt, st). The prediction potential
captures the system dynamics by measuring the compatibility of the current state
and the previous state and therefore acts very much its counterpart in the traditional
sequential Bayesian filter, the state evolution model. The observation potential
processes the measurement information and measures the compatibility of this
information with a given state estimate. It therefore is the counterpart to the
measurement distribution in the traditional sequential Bayesian filter.

This formulation is attractive because it is more general than the original
sequential Bayesian filter formulation. In order to use particle filtering to perform
inference in the model, it is necessary to be able to sample from the prediction
potential, much like in the traditional particle filtering case. For this reason the
notation ψ(st | st−1) will also be used, as the expression must represent a valid
probability distribution. However, in the CRF-Filter formulation, the observation
potential can be any non-negative function of its arguments. Provided that this
condition is met, the Hammersley-Clifford theorem states that the graphical model
will still represent a valid probability distribution [172]. This affords far greater
modelling flexibility to design advanced, discriminative measurement models without
being concerned about the function being a valid generative probability distribution
as required in traditional sequential Bayesian filter.

Monte Carlo inference in the CRF Filter model using SIS or SIR particle filtering
proceeds exactly as in Algorithms 6.1 and 6.2 respectively, with the state evolution
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distribution p(st | st−1) replaced with the prediction potential ψ(st, st−1) and the
measurement distribution p(zt | st) replaced with the observation potential ω(zt, st).

Consequently, the differences between the two approaches are mostly theoretical
insofar as they wil be used in this thesis. In particular, one could adapt the sequential
Bayesian filter approach to use a discriminative model by relating p(zt | st) and
p(st | zt) via Bayes rule, and assuming a constant prior p(st). Doing so would
arrive at an identical filtering procedure. However in this thesis the conditional
random field presentation will be preferred as it obviates the need to justify the
observation models as reflecting valid probability distributions.

6.3.3 Partitioned Particle Filters

The concept of survival rate [175] is key to analysing the performance of particle
filters. The survival rate is defined as the fraction of particles that are expected to
survive each resampling stage. A filter has a high survival rate if the probability mass
in the state evolution distribution is highly concentrated and/or the probability mass
in the measurement distribution is sparsely distributed such that after the prediction
step the majority of particles are concentrated in the area of high probability
according to the measurement distribution and therefore receive high weights.

The concept is formalised by MacCormick et al. [175], who define the survival
rate, α, for a filter as follows. Given the predicted distribution p(st | z0:t−1) (after
the prediction step in Equation 6.1) and the filtering distribution p(st | z0:t) (after
the update step in Equation 6.2) can be found as follows:

α =
(∫

S

p(st | z0:t)2

p(st | z0:t−1) ds
)−1

(6.5)

Maintaining a high survival rate is important in order to maintain a diverse
set of particles, which in turn reduces the probability of the particle filter ‘missing’
areas of high probability in the filtering distribution. If a particle filter has a
low survival rate, a large number of particles must be used in order to have an
effective filter. This is a particularly acute problem when the state dimension
is large because the areas of high measurement likelihood tend to represent a
smaller proportion of the state space.

In order to reduce this problem for high-dimensional filters, MacCormick et
al. [175, 176] introduced the partitioned particle filter2. The fundamental idea

2The presentation of partitioned particle filters by MacCormick et al. [175] is slightly more
general than that presented in this thesis. For reasons of conciseness, the version presented here
corresponds to the articulated model special case in §3.3 of that paper.
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here is to group the variables that form the state vector into partitions that can
be considered in sequence, and then performing the particle filtering algorithm
on each partition in turn. This technique works well in situations where certain
independence assumptions can be made about the state evolution and measurement
distributions in each partition, and in such situations can improve the survival
rate such that fewer particles need to be used.

Consider a state vector st = s1:Q,t = [sT1,t, sT2,t, . . . , sTQ,t]T that has been split into
Q ∈ N partitions (note that here the first subscript denotes the partition index
and the second denotes the time-step). The colon notation in the subscript sn:m,t

denotes the concatenation of the variables in all partitions between indices n and
m inclusive (at time-step t). A partitioned particle filter can be constructed that
updates the particle set one partition at a time, with partition 1 first and partition
Q last, provided that the following conditions are satisfied:

• The state evolution model p(s1:Q,t | s1:Q,t−1) can be rewritten using the
probability chain rule as the product of a state evolution model for each
partition, where the state evolution model for a given partition is independent
of the values of later partitions (but not necessarily independent of earlier
partitions) at the same time-step, i.e.

p(s1:Q,t | s1:Q,t−1) = p(s1,t | s1:Q,t−1)
Q∏
q=2

p(sq,t | s1:q−1,t , s1:Q,t−1) (6.6)

This factorisation allows the update step for the first partition to occur
independently of the second partition and so on. Note that in the Equation 6.6,
the first term in the product (corresponding to the first partition) has been
written separately as it does not depend on the value of any other partition
at time t.

• The measurement distribution may be factorised into a form that can be
evaluated for each partition independently of the value of later partitions, i.e.

p(zt | s1:Q,t) =
Q∏
q=1

p(zt | s1:q,t) (6.7)

If these conditions (Equations 6.6 and 6.7) are satisfied, then the SIR algorithm
for partitioned particle filtering proceeds by applying the state evolution model,
measurement model and resampling step to each partition in turn. The procedure
is given in Algorithm 6.3 and a schematic representation is shown in Figure 6.4.
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Input: a particle set {s(i)
t−1}Pi=1 and importance weights {w(i)

t−1}Pi=1 at time t− 1
Output: an updated particle set {s(i)

t }Pi=1 and importance weights {w(i)
t }Pi=1 at

time t

{Create a list to track the index of ‘ancestor’ of each particle from time t− 1}
for i ∈ N1,P do
k0,i ← i

end for
{For all partitions}
for q ∈ N1,Q do
{For all particles}
for i ∈ N1,P do
{Create a copy of all partitions}
ŝ(i)
t ← s(i)

t

{Sample from the state evolution distribution for current partition}
ŝ(i)
q,t ← ŝ(i)

q,t ∼ p(sq,t | s(i)
1:q−1,t , s(kq−1,i)

1:Q,t−1)
{Update weight according to the measurement distribution for this partition}
w

(i)
t ← w

(i)
t p(zt | ŝ(i)

1:q,t)
end for
{Find the sum of the updated weights}
Wt ←

∑P
i=1 w

(i)
t

{Re-normalise the importance weights}
for i ∈ N1,P do
w

(i)
t ←

w
(i)
t

Wt

end for
{Resample}
for i ∈ N1,P do

{Draw a resampling index for this particle according to importance weights}
j ← j ∼ D(j | wt)
{Resample all partitions according to this index}
s(i)
t ← ŝ(j)

t

{Update the ancestor index for this particle}
kq,i ← kq−1,j

end for
{Reset the weights}
for i ∈ N1,P do
w

(i)
t ← 1

P

end for
end for

Algorithm 6.3: The Sequential Importance Resampling particle filtering algorithm
for a partitioned particle filter. The algorithm is similar to Algorithm 6.2, but more
‘book-keeping’ is necessary due to multiple resampling stages per time-step.
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∗p(s1,t | s1:Q,t−1)

∗p(sq,t | s1:q−1,t , s1:Q,t−1)

p(st−1 | z0:t−1) ∼

∼×p(zt | s1:q,t)

p(st | z0:t)

×p(zt | s1,t)

q ∈ N2,q

Figure 6.4: Filtering diagram for the partitioned particle filter following the convention
of Figure 6.1. There is now one state evolution, re-weighting and resampling step for each
of the Q partitions.

The key to the performance of partitioned particle filters is the improved survival
rate of the particles. Suppose a partitioned filter is factorised into Q partitions
each with survival rate αq. In this case, if the standard SIR algorithm were used,
the overall survival rate would be ∏Q

q=1 αq. However, when the partitioned filtering
algorithm is used, this is replaced by Q resampling processes, each of survival
rate αq, with the dynamic models being applied in between. Consequently, the
particle set is more concentrated at areas of high likelihood throughout the process,
see Figure 6.5 for an example of this.

A CRF-Filter may be partitioned in exactly the same way. In this case, the two
conditions on the state evolution and measurement distributions (Equations 6.6 and
6.7) are replaced with the conditions on the prediction and observation potentials
in Equations 6.8 and 6.9 respectively.

ψ(s1:Q,t | s1:Q,t−1) =
Q∏
q=1

ψ(s1:q,t | s1:Q,t−1) (6.8)

ω(zt , s1:Q,t) =
Q∏
q=1

ω(zt , s1:q,t) (6.9)

6.4 Filtering Architectures for Heart Tracking

Having covered the relevant background material in §6.2 and §6.3, the rest of this
chapter will develop a particle-filtering based model for tracking the global state
variables in fetal heart ultrasound videos. In this section, an overview of two model
architectures for this purpose is presented. The state in both cases is represented by
the tuple containing the heart’s visibility, position, view, orientation, cardiac phase,
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shown by its contours (yel-
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(i) The particles are resam-
pled to concentrate them
at areas of high probability.
Note that several particles
appear on top of each other.

Figure 6.5: Illustration of a single time-step of the SIR filtering algorithm for partitioned
filtering. The model is the same as that in Figure 6.2 except that now the each of the
state variables, s1 and s2 occupies its own partition. Note how resampling between the
partitions concentrates the particles in high probability areas throughout the process.
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and cardiac phase rate, as defined in Equation 1.1, and the aim is to estimate these

state variables from the video sequence as each frame is processed.

The filters are CRF-Filters that use the random forest models described in

Chapter 4 as the observation potentials as they represent a powerful and efficient

way to assess different hypotheses about the state without a full generative model of

the imaging process. The prediction potentials in the filter are chosen to capture prior

anatomical knowledge about the fetal heart and its appearance in ultrasound videos.

The factorisation of the filter into partitions is very natural in this case. The

observation potentials described in previous chapters make predictions about the

state variables independently. Moreover, it is natural to assume that changes in

heart position and view are independent from changes in orientation and cardiac

phase. Consequently, a partitioned filter is used to exploit this natural partitioning

of the state in order to improve the filter efficiency.

The two different architectures presented below (and shown schematically in

Figure 6.6) differ in their treatment of the orientation state variable. The first,

RIFFilter, uses rotation-invariant features (Chapter 3), and is therefore able to

assess position, view class and cardiac phase independently of orientation. This

allows the orientation state variable to be placed in a separate partition after

the other variables, giving a total of three partitions. The second architecture,

RECFilter, uses rectangular filters, and therefore must assume a certain orientation

in order to re-weight the particles according to their position, view class, and

cardiac phase state variables. The orientation state variable must therefore appear

in an earlier partition, giving an architecture with two partitions. The two filter

architectures are defined in §6.4.2 and §6.4.3.

Both architectures use a common factorisation of the prediction potential, as

outlined in §6.4.1, but place them in different orders within the filtering procedure.

6.4.1 Prediction Potential Factorisation

The factorisation of the prediction potential function used by both architectures

breaks the potential function down as the product of terms corresponding to each

of the six state variables as follows (c.f. Equation 6.8):
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ψ(st | st−1) =ψ(ht | ht−1)×

ψ(vt | vt−1)×

ψ(xt | xt−1, θt−1, vt, vt−1)×

ψ(θt | θt−1, vt, vt−1)×

ψ(φt | φt−1, φ̇t−1)×

ψ(φ̇t | φ̇t−1) (6.10)

The details of each of these six prediction potentials are given in §6.5. Note that
there is not a one-to-one correspondence between the terms in this factorisation
and the partitions of the filtering architectures in the following sections. This
reflects the fact that there are groups of variables in the state for which the
prediction potential functions may be assumed to be independent, but that cannot
be re-weighted independently.

For readability, a subscript-based shorthand notation for these terms will be
used as follows:

ψh(st | st−1) = ψ(ht | ht−1)

ψv(st | st−1) = ψ(vt | vt−1)

ψx(st | st−1) = ψ(xt | xt−1, θt−1, vt, vt−1)

ψθ(st | st−1) = ψ(θt | θt−1, vt, vt−1)

ψφ(st | st−1) = ψ(φt | φt−1, φ̇t−1)

ψφ̇(st | st−1) = ψ(φ̇t | φ̇t−1)

6.4.2 The RIFFilter Architecture

The schematic representation of the RIFFilter architecture is shown in Figure 6.6a.
The filter uses three partitions. The first contains the visibility, ht, heart position, xt,
and view class vt state variables and is re-weighted using the RIFDetection forest,
which is invariant to orientation (due to its use of RIFs) and phase (by training). The
second contains the cardiac phase, φt, and cardiac phase rate, φ̇t, state variables, and
is re-weighted using the RIFPhase forest models, which are invariant to orientation
(due to their use of RIFs). The third and final partition contains the orientation,
θt, state variable and is re-weighted using the RIFOri models.
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6.4.3 The RECFilter Architecture

The schematic representation of the RECFilter architecture is shown in Figure 6.6b
and uses two partitions. The first partition contains the visibility, ht, heart position,
xt, view class vt, and orientation, θt, state variables and is re-weighted using the
RECDetection forests at the relevant orientation, which are invariant to phase by
training. The second contains the cardiac phase, φt, and cardiac phase rate, φ̇t,
state variables, and is re-weighted using the RECPhase forest models,

6.4.4 Filtering Using Hidden Particles

The standard particle filtering model assumes that the measurement information
(in this case, the image) is always informative about the value of the state, as this
is a natural assumption in most cases. However the fetal heart in ultrasound videos
is not always visible in the image. Without the visibility state variable, h, the
filter would always lock onto the particles that received the highest weight from
the observation potentials, regardless of how high those weights were in absolute
terms. This is a consequence of the normalisation of the weights that occurs in
the SIR algorithm. Therefore when the heart disappeared from the image, the
filter would lock onto some other part of the image and reflect any small variations
in the observation potential function.

The purpose of the hidden state variable is both to prevent this undesirable
behaviour and explicitly detect when the heart is no longer visible in the image. In
both filter architectures, the re-weighting scheme for the hidden particles (those
with ht = 1) is different from that for visible particles (with ht = 0), and uses a
mechanism that is shown by the black dotted lines in the schematics in Figure 6.6.
At the detection and view classification stage, the hidden particles are not re-
weighted by the observation potential but are instead given a small, constant
weight whidden that does not depend on the other state variables or the image
information. This creates branches in the filtering schematic, similar to those used
by MacCormick [176] for other purposes.

The rationale for this design is as follows. If many visible particles are assigned
a high weight value (� whidden) by the observation potentials (indicating a high
probability of a heart being present at their position), then the hidden particles
will have small normalised weights and most will be removed at the following
resampling step. However, if most visible particles are assigned a small weight
(≈ whidden or < whidden), then the normalised weights of the hidden particles will
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be large and many will survive the following resampling step, reflecting increased
uncertainty about the presence of the heart.

The hidden particles then move through the rest of the prediction potentials in
the same way as the visible particles. This means that the hidden particles still
‘remember’ the likely state that they will be in if they re-appear. This reflects
the fact that if the heart disappears from the image due to obscuring artefacts or
out-of-plane motion, it is most likely to be in a similar position and orientation
when it re-appears but the uncertainty grows with the length of time for which
the heart was not visible. Furthermore, the cardiac phase cycle should continue
regardless of whether the heart is visible in the image or not. However, the hidden
particles do not participate in any of the subsequent observation potentials or
resampling steps, as it is not possible to assess the heart orientation or cardiac
phase when the heart cannot be seen in the image.

6.5 Definition of Prediction Potential Terms

This section gives the details of the terms in the factorisation of the prediction
potential in Equation 6.8. The same terms are used (it in a different order) in
the both the filtering architectures presented in §6.4.

Recall that each term is a probabilistic model of the evolution of one state
variable, and may depend on (i.e. be conditioned upon) other state variables in
earlier partitions. The design of the terms aims to incorporate prior knowledge
about the appearance of the heart in the video, including changes due to both
fetal motion (including the fetal heartbeat) and probe motion during the scan.
Another important consideration is that the terms must be easy to sample from
in a computationally efficient manner.

The rest of this section considers each term in turn.

6.5.1 Visibility Prediction Potential, ψh(st | st−1)

This term models the probability of the heart moving between the hidden and visible
states, represented by the Boolean state variable ht ∈ {0, 1} where 0 represents
visible and 1 represents hidden. The term is independent of the other state variables:

ψh(st | st−1) = ψ(ht | ht−1) (6.11)

The model captures the fact that the heart may become hidden due to relative
motion between the probe and the fetus. This includes motion of the fetus and
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motion of the probe (voluntary and involuntary) in the sonographer’s hand. The
heart can disappear due to relative motion within the imaging plane (i.e. the
heart disappears off the side of image) and/or perpendicular to the imaging plane.
There are also situations where the heart is within the visible area but very strong
artefacts (e.g. shadowing effects) obscure it.

To model these effects, a hidden particle becomes visible with a fixed probability
Ph→v ∈ [0, 1], and a visible particle becomes hidden with a (generally different)
fixed probability Pv→h ∈ [0, 1], i.e.

ψ(ht | ht−1) =


Ph→v, ht = 0, ht−1 = 1
1− Ph→v, ht = 1, ht−1 = 1
Pv→h, ht = 1, ht−1 = 0
1− Pv→h, ht = 0, ht−1 = 0

(6.12)

These parameters should not be chosen without a careful analysis of the statistics
of the resulting Markov chain. Consider a single particle evolving according to this
transition probability model in the absence of particle re-weighting and resampling.
Let the probability of the particle being hidden at time t be λt ∈ [0, 1]. The
probability that the particle is visible is accordingly 1 − λt, and so we can write
the distribution over the two states at time t as a vector

λt =
[
1− λt
λt

]
(6.13)

Over time, this distribution will evolve as the particle randomly transitions
between the two states. The evolution of this distribution is described by the
transition matrix M, as follows:

[
1− λt
λt

]
=
[
1− Pv→h Ph→v
Pv→h 1− Ph→v

] [
1− λt−1
λt−1

]
(6.14)

or, in matrix notation,

λt = Mλt−1 (6.15)

The stationary distribution of this Markov chain is the distribution to which
the Markov chain converges as t→∞. The stationary distribution occurs at the
eigenvector of M with eigenvalue 1 (there will always be one such eigenvalue by
construction of M), such that λt = λt−1 (see Chapter 17 of Murphy [172]). At this
distribution, the probability that the particle is hidden is λ∗, where

λ∗ = Pv→h

Pv→h + Ph→v
(6.16)
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and accordingly the probability of the particle being visible is 1−λ∗. Given sufficient
time for convergence (assuming that none of the transition probabilities are zero),
the distribution over the two states for each particle will converge to this stationary
distribution regardless of the initial state. Therefore, over time, the expected
proportion of hidden particles in the particle set will also converge to λ∗.

Tuning this stationary distribution can be considered as a method for adjusting
the sensitivity of the filter. If λ∗ is large, the equilibrium state of the Markov
chain contains mostly hidden particles, and so the weight of the visible particles
(from the observation potentials) must be much larger than whidden to overcome
this imbalance and bring a majority of visible particles at the resampling step.
However, if λ∗ is approximately 0.5 then the equilibrium state of the Markov chain
contains a roughly equal number of hidden and visible particles, and consequently
the weight of the visible particles need only be slightly larger than whidden to
create a majority of visible particles.

If a value for λ∗ is chosen, then the transition probabilities must be chosen such
that

Pv→h = Ph→v
λ∗

1− λ∗ (6.17)

which, along with the constraint that both are valid probabilities between 0 and
1, excludes certain values of each transition probability.

However, the stationary distribution is not the only important consideration when
tuning these parameters because the transitory behaviour, or how the stationary
distribution is reached, is also important. This is governed by the second eigenvalue
of M, which governs the decay of the component of the particle’s initial state along
the second eigenvector. The value of this eigenvalue is

ε2 = 1− (Pv→h + Ph→v) (6.18)

If a desired second eigenvalue ε2 is specified along with a desired distribution, then
solving Equations 6.17 and 6.18 gives values for the two transition probabilities
required to give these desired properties:

Ph→v = (1− ε2)(1− λ∗) (6.19)
Pv→h = (1− ε2)λ∗ (6.20)

Due to the constraints that transition probabilities Ph→v and Pv→h are both
between 0 and 1, only certain values of ε2 are achievable. This puts the following
constraints on ε2:
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Figure 6.7: The valid region for ε2 given λ∗. The dotted lines represent the three
constraints and the grey shaded area represents the valid region.

• ε2 ≤ 1. This follows straightforwardly from Equation 6.18 and Ph→v ≥ 0 and
Pv→h ≥ 0.

• ε2 ≥ λ∗−1
λ∗ and ε2 ≥ λ∗

λ∗−1 . These can be derived from Equations 6.19 and 6.20
and Ph→v ≤ 1 and Pv→h ≤ 1. Note that the first of these two constraints is
active when λ∗ ≥ 0.5 and the second is active when λ∗ ≤ 0.5 (and both when
λ∗ = 0.5). In all cases this means that ε2 ≥ −1.

These constraints lead to a permissible region for ε2 as shown in Figure 6.7.
The effect of altering ε2 is described in Table 6.1 and simulated in Figure 6.8.

Desirable behaviour for the purposes of the filter is that the distribution over the
two states should converge to the stationary distribution relatively slowly in order to
model the fact the heart changes from hidden to visible infrequently. This suggests
that the value of ε2 should be set to be a positive number below but fairly close to 1,
however there is also an interaction with the λ∗ parameter. Rather than choose ε2

directly, it is more intuitive to instead choose a time constant parameter τ , given by

τ = 1
1− |ε2|

(6.21)

which determines the number of frames taken to reach the stationary distribu-
tion (the distribution gets closer to the equilibrium fraction by a factor of e−1

every τ frames).
The effect of varying these parameters on the detection performance in inves-

tigated experimentally in Chapter 7.
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Region Behaviour Description
ε2 = 1 Marginally Stable The particle’s state is fixed over time.

0 < ε2 < 1 Overdamped The distribution over the two states
decays to the stationary distribution
without oscillation. The lower ε2 is,
the faster the decay.

ε2 = 0 Critically Damped The distribution over the two states
moves straight to the stationary dis-
tribution in a single time-step. This
occurs when the probability of the
heart being hidden in a given time-
step does not depend on previous
time-steps.

−1 < ε2 < 0 Underdamped The distribution over the two states
oscillates around the stationary dis-
tribution with decaying amplitude.
The smaller |ε2|, the faster the decay.

ε2 = −1 Undamped This is only possible when λ∗ = 0.5
and implies that the particle will
continuously change back and forth
between the two states on each time-
step.

Table 6.1: Behaviour of the distribution over the two states for a single particle over
time for different values of ε2. This only considers the behaviour in the absence of the
re-weighting and resampling steps.

6.5.2 View Prediction Potential, ψv(st | st−1)

This term models the view transitions made between the three view categories
represented by the discrete state variable vt ∈ {4C,LVOT,3V},

ψv(st | st−1) = ψ(vt | vt−1) (6.22)

A view transition occurs due to (usually deliberate) relative motion of the probe
and the fetus in the direction perpendicular to the imaging plane. The probability
of a transition between the different viewing planes is implemented simply as a
discrete distribution with a constant probability of moving to each new state:

ψ(vt | vt−1) =

psame, vt = vt−1

pchange, vt 6= vt−1
(6.23)

Typically a sonographer will move relatively slowly between the different views
and therefore psame � pchange. However, it is often helpful to slightly overestimate
the probability of transition to allow the filter to recover from mistakes. The
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(a) ε2 = 1.0
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(b) ε2 = 0.8
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(c) ε2 = 0.2
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(d) ε2 = 0.0
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(e) ε2 = −0.5
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(f) ε2 = −1.0

Figure 6.8: Simulations of the evolution of the fraction of hidden particles in a particle
set in the absence of re-weighting and re-sampling steps. Different values of ε2 are
shown, exhibiting the behaviour described in Table 6.1. In all cases λ∗ = 0.5 (shown as
a horizontal dotted line) and the initial distribution contained 1000 particles with 900
hidden particles.

three viewing planes have a natural order to them (4C, LVOT and 3V moving
in a cephalad direction, i.e. towards the fetal head) that could be modelled at
this stage by, for example, making it more likely for a 4C view to transition to
an LVOT view than to a 3V view. However observations of the dataset have
suggested that in practice abrupt probe motions do cause transitions through
multiple views like this relatively frequently.

Note also that this assumes that view transitions happen instantaneously between
two consecutive frames, whereas in practice they occur over a number of frames
with a number of ambiguous frames occurring in between. However, modelling
this transitional period would dramatically increase the complexity of the model
with little gain.

6.5.3 Position Prediction Potential, ψx(st | st−1)

This term models changes in the position of the heart centre in the image, xt ∈ R2,
and depends upon the heart view and orientation:

ψx(st | st−1) = ψ(xt | xt−1, θt−1, vt, vt−1) (6.24)
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When a frame contains the same view of the heart as the previous frame
(vt = vt−1), then a change in position can occur due to probe motion and/or fetal
motion within the imaging plane. When a view transition occurs (vt 6= vt−1), the
change of position is composed of two parts. The first is in-plane motion as can
occur between any two consecutive frames. The second is due to the fact that the
centre position is defined differently in each view (see Figure 1.4). This view offset
is uncertain due to anatomical variation between subjects and small differences
in the location of the imaging plane within the anatomy.

A 2D Gaussian distribution is used to model the change in position between
each pair of different views (vt and vt−1). The distributions are learnt at training
time relative to a heart at orientation zero and with unit radius, giving relative
offset distributions with means µ̂v1→v2 ∈ R2 and covariances Σ̂v1→v2 ∈ R2×2, where
the ‘̂·’ diacritic is used to distinguish the relative distribution parameters. At test
time, these are then scaled by the radius Rtest and rotated by the orientation θt−1

to give the absolute mean and covariance of the offset.
Specifically:

ψ(xt | xt−1, θt−1, vt, vt−1) = N2(xt | µt,Σt) (6.25)

where the (absolute) mean and covariance are given by:

µt = xt−1 +RtestR[θt−1]µ̂vt−1→vt
(6.26)

Σt = rR[θt−1]Σ̂vt−1→vtRT
[θt−1] (6.27)

Here, N2( · | µ,Σ) is the PDF of a 2D Gaussian distribution with mean µ and
covariance Σ, and R[θ] is the 2× 2 rotation matrix representing a rotation through
angle θ. Note that the mean of the relative offset distribution, µ̂v1→v1 , is constrained
to be zero when the view does not change. However the covariance, Σ̂v1→v1 , is
non-zero to represent in-plane motion. In practice, sampling from the 2D Gaussian
is achieved using the precomputed Cholesky decomposition of the covariance matrix.

In the case where the updated position moves the heart to within the detection
radius of the edge of the ultrasound fan area (i.e. off the edge of the permissible area
of the image), the updated value is ignored and the previous position is maintained.
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6.5.4 Orientation Prediction Potential, ψθ(st | st−1)

This term models changes in the orientation of the heart, θt ∈ [0, 2π), and depends
on the view state variable:

ψθ(st | st−1) = ψ(θt | θt−1, vt, vt−1) (6.28)

When no view transition has occurred between the time t and t− 1, changes
in orientation are due to relative angular motion between the fetus and the probe
within the imaging plane. When there is a view transition, there is an orientation
offset due to the different definitions of the orientation in each view (see Figure 1.4).
The orientation offset accompanying each view transition is modelled by a wrapped
normal distribution [166]. The wrapped normal distribution with mean µ and
variance σ is a distribution over the range [0, 2π) formed by wrapping the PDF of the
univariate Gaussian distribution with mean µ and variance σ around the range [0, 2π).
Consequently, unlike the similar von Mises distribution, its PDF has an inconvenient
form (expressed as an infinite sum), but is straightforward to sample from. Sampling
from a wrapped normal distribution involves sampling from the corresponding
Gaussian distribution and then wrapping the result to lie in the range [0, 2π).

Each view transition uses its own wrapped normal distribution with mean
ξ̂v1→v2 ∈ [0, 2π) and variance τv1→v2 ∈ R+

0 for the orientation offset. The dis-
tribution parameters are learnt at training time using standard fitting routines
for circular data.

ψ(θt | θt−1, vt, vt−1) =W(θt | ξt, τvt−1→vt) (6.29)

where

ξt = θt−1 + ξ̂vt−1→vt (6.30)

and W( · | ξ, τ) is the PDF of the wrapped normal distribution. Again zero mean
(ξ̂v1→v1 = 0) but non-zero variance is assumed when no view transition has occurred.
Note that the variance τ does not depend on any other parameter, and therefore
does not have a relative and absolute form.



126 6.5. Definition of Prediction Potential Terms

6.5.5 Cardiac Phase Prediction Potential, ψφ(st | st−1)

This term models changes in the cardiac phase variable, φ ∈ [0, 2π). Since a second
order model is used for the cardiac phase, in this case the model is a deterministic
one given the current value of the phase rate variable, φ̇. Assuming that φ̇ is
expressed in rad s−1, the update equation is

φt = φt−1 + φ̇t−1

∆t (6.31)

where ∆t is the (constant) time elapsed between video frames in seconds. The
purpose of dividing by ∆t here is to ensure that the state evolution model is not
sensitive to the frame rate of the video being analysed.

6.5.6 Cardiac Phase Rate Prediction Potential, ψφ̇(st | st−1)

This term models changes in the cardiac phase rate variable φ̇, and is assumed
to be independent of the other state variables.

ψφ̇(st | st−1) = ψ(φ̇t | φ̇t−1) (6.32)

In the absence of cardiac defects, the cardiac phase rate (i.e. heart rate) should
remain relatively constant over the course of the video. However some variation
must be permitted to allow the filter to track small changes, lock on to the correct
phase rate initially and recover from mistakes. Therefore small variations are
modelled using a Gaussian offset, with constant variance η:

ψ(φ̇t | φ̇t−1) = N1(φ̇t | φ̇t−1, η) (6.33)

In order to prevent unreasonable values, and avoid time aliasing effects, hard
limits of φ̇min and φ̇max are placed on the value of the cardiac phase rate. If an
update would take the value outside of the permissible region, the updated value
is ignored and the previous value in maintained.

6.5.7 Particle Initialisation

The particle set must be initialised to represent the initial distribution at the start
of the video. This is performed by sampling a value for each state variable of
each particle independently from each other particle and state variable according
to the distributions outlined in Table 6.2.



6. Particle Filtering for Tracking the Fetal Heart in Videos 127

State Variable Symbol Initial Distribution
Visibility h A Bernoulli distribution with p(h =

1) = λ∗, the stationary hidden fraction.
View v A discrete uniform distribution over the

three views.
Location x A 2D continuous uniform distribution

over the valid region of the image (more
than the heart radius Rtest from the
edge of the ultrasound fan area).

Orientation θ A continuous uniform distribution over
the interval [0, 2π).

Cardiac Phase φ A continuous uniform distribution over
the interval [0, 2π).

Cardiac Phase Rate φ̇ A gamma distribution with shape pa-
rameter α0 ∈ R+ and rate parameter
β0 ∈ R+, which are fitted at training
time on the annotated training set.
Values outside the range [φ̇min, φ̇max]
are drawn again.

Table 6.2: The initial distributions used for creating the initial particle set.

6.6 Definition of Observation Potential Terms

Table 6.3 contains the definitions of the five observation functions used in the
filters (see Figure 6.6). Note that, unlike the prediction potential terms, different
observation potentials are used in each of the two filtering architectures.

6.7 Extracting State Estimates from a Particle
Set

Recall that the purpose of the particle filter is to maintain a probabilistic estimate
of the state at each time-step by updating the filtering distribution, which is
represented by a weighted a particle set. Whilst this approach has a number of
advantages, especially with regards to the robustness of the algorithm, for many
purposes it is necessary to extract a single point estimate of the state value at each
time-step, rather than work with the full filtering distribution.

One way of doing this is to take the mean of all the particles in the set as
the state estimate. This is very straightforward to do and generally results in a
state estimate that varies smoothly over time. However, this does not give very
meaningful results when the filtering distribution is multi-modal, as the mean might
lie in an area of low probability (i.e. low particle density).
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Function Definition
ωA(st, zt) The probability of the view vt at image location xt as

calculated by the RIFDetection forest.
ωB(st, zt) The probability of the cardiac phase value φt at the location

xt as calculated by the RIFPhase forest model for view vt.
ωC(st, zt) The probability of the orientation θt at image location xt as

calculated by the RIFOri models attached to the leaf nodes
of the RIFPhase forest model that are reached by passing
the particle into the RIFPhase forest model as above.

ωÂ(st, zt) The probability of the view vt at image location xt as
calculated by the two RECDetection forests models with
training orientations closest to θt (one either side of θt
accounting for the wrapping of the orientation). To get
a single value, the weighted mean of these two values is used,
where the weights reflect the distances of the training angle
from θt.

ωB̂(st, zt) The probability of the cardiac phase value φt as at the
location xt as calculated by the two RECPhase forests models
with training orientations closest to θt and averaged as above.

Table 6.3: Definitions of the observation potential functions used by the two architectures.
Details of the models are referred to are found in §5.3.1 and §5.5.1.

A second method is to estimate the mode of the filtering distribution by selecting
the particle with the highest normalised weight before the re-sampling step. This
ensures that the point estimate lies in an area of high probability density in
the filtering distribution. However it is very sensitive to small variations in the
observation potentials and therefore tends to vary significantly and erratically
between time-steps, leading to a point estimate that behaves in an unrealistic
manner over time.

To balance between this two extremes, a third option is to use the mean-
shift algorithm [178] to find a mode of the filtering distribution. This ensures
that the estimate lies in a high density area of the filtering distribution, but
generally results in more smoothly varying point estimates than choosing the
particle with the highest weight.

However, the mean-shift algorithm cannot be straightforwardly applied to a
particle set in the heart state space used here because it contains a mixture of
discrete, continuous and circular variables. This section describes a method to apply
the mean shift algorithm to calculate point estimates from partitioned particle filters.

The central idea is to apply the mean-shift algorithm to each state variable
in turn, in the order that they are updated in the partitioning scheme. However,
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only the particles that fall within the mean-shift kernel of all previous partitions
are considered within a certain partition.

For the discrete state variables (h and v), the mean-shift algorithm simply
involves finding the mode of the discrete distribution. Only the particles that have
this the modal value of the state variable are considered in the mean-shift stage for
subsequent variables. For example, if the modal value of ht is 0 (i.e. visible) then
only the visible particles are considered in the mean-shift stage for vt.

For the real-valued state variables (x and φ̇), the mean-shift algorithm starts
at the mean value of the input particle set. Mean-shift then takes place with a
(flat) kernel of a specified size (Kx or Kφ̇ for the corresponding state variables)
and continues until the updates are less than a specified tolerance (εx and εφ̇).
Only those particles that lie within the kernel are passed down to the mean-
shift for the next state variable.

For the circular state variables (θ and φ), mean-shift starts at the circular mean
(Equation 4.8) of the input particle set and uses a kernel based on the circular
distance (Equation 4.9) with a fixed angular width (Kθ or Kφ for the corresponding
state variables). It continues until the updates fall below a fixed tolerance (εθ and
εφ), and only particles whose values fall within this kernel are passed down to the
mean-shift algorithm for the next state variable.
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This chapter experimentally evaluates the filtering framework described in

Chapter 6. Related results were presented in an article in Medical Image Anal-

ysis [163], but those experiments did not use partitioning of the particle filter

framework and were conducted with an older, less computationally efficient version

of the implementation. The results here also expand upon those in that article

by considering the effect of further parameters (such as the composition of the

random forest models), and performing a comparison of RIFs with more standard

rectangular features.
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Parameter Description
µ̂v1→v2 , Σ̂v1→v2 Mean and covariance of the relative distribution for the

position prediction potential when a view transition
between two different views v1 and v2 occurs. There
are six such distributions, one for each combination of
different views.

ξ̂v1→v2 , τv1→v2 Circular mean and circular variance of the orientation
prediction when a view transition between two different
views v1 and v2 occurs. There are six such distributions,
one for each combination of different views.

α0, β0 Shape and rate parameters of the gamma distribution
for the initialisation of cardiac phase rate particles.

Table 7.1: List of filter prediction parameters fitted to training data.

7.1 Fitting Prediction Potential Models

There are a number of parameters of the prediction potentials (§6.5) that must be
fitted to the training data, which in this case are the ground truth annotations.
These parameters are listed in Table 7.1.

The α0, β0 parameters are straightforward to fit to the set of annotations.
The cardiac phase rate is calculated at each frame in the dataset that contains
a heart by referring to the cardiac phase value in that frame and the previous
frame. Then, the α0, β0 can be fitted to these values using a standard maximum
likelihood approach for a gamma distribution.

The remaining parameters from Table 7.1 (µ̂, Σ̂, ξ̂, and τ) are more complicated
to fit because they relate to transitions between the different views. The first stage
is therefore to find suitable transitions – i.e. sequences of video where the view label
changes from one of the heart views to another heart view in consecutive frames.
The accompanying change in position and orientation then forms one data point
for the transition parameters in question. Given these data points, the parameters
can be fitted using standard maximum likelihood parameters.

A number of other parameters were fixed in value for all experiments using
values that were found to give reasonably good results. These are listed in Table 7.2.

The effect of varying the parameters of the visibility prediction potential (the
equilibrium fraction of hidden particles λ∗, time constant τ and hidden weight
whidden) is investigated in §7.3.3.
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Parameter Value Description
psame 0.90 Discrete probability of a particle keeping

its view label between frames.
pchange 0.05 Discrete probability of a particle moving

to each of the other views between frames.
Σv1→v1 1.0I pixels2 Covariance of the position prediction po-

tential when the view does not change
between two consecutive frames.

τv1→v2 0.0025 rad2 Circular variance of the orientation pre-
diction potential when the view does not
change between two consecutive frames.

η 0.04 rad2s−2 Variance of the prediction potential for
the cardiac phase rate variable.

φ̇min, φ̇max 100, 200 bpm The minimum and maximum permissible
values for the cardiac phase rate variable
φ̇.

Table 7.2: List of filter prediction parameters taking fixed values.

Parameter Value Description
Kx 5.0 pixels Kernel size for the position mean shift.
Kθ 0.25 rad Kernel size for the orientation mean shift.
Kφ 0.25 rad Kernel size for the cardiac phase mean shift.
εx 1.0 pixels Tolerance for the position mean shift.
εθ 0.05 rad Tolerance for the orientation mean shift.
εφ 0.05 rad Tolerance for the cardiac phase mean shift.

Table 7.3: Parameters of the mean-shift algorithm used in experiments.

7.2 Mean Shift Parameters

The parameters of the mean-shift algorithm used to extract point estimates for
the state values from the particle sets were not found to have a significant impact
on the results. Reasonable values, shown in Table 7.3, were chosen empirically
and used for all experiments.

7.3 Results

Within the particle filtering framework, the estimates of the different variables
(location, view, orientation, phase, visibility) become interdependent because they
are all based on a single set of particles that is affected by the reweighting stages of
all the partitions. It is therefore not possible to consider the different variables in
complete isolation. However in the following section, the variables will be discussed
separately as far as is possible.
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Figure 7.1: Average per-frame calculation times for different calculation methodologies
with particle filtering. The models used were a RIFDetection forest with Ntrees = 16
trees and Dmax = 10 and a RIFPhase forest with Ntrees = 32 trees and Dmax = 8, both
using grad322motion322_extra, and 1000 particles.

7.3.1 RIF Calculation Methodologies

The relative speeds of the different calculation methodologies was investigated
previously in §5.6.1. However, the speed of the calculations is likely to be highly
dependent upon the way in which the forest models are queried. The experiments in
Chapter 5 considered every valid image location in each frame as a possible location
for the heart, and therefore a very large number of queries of the random forest
model are made for each frame. By contrast, in the particle filtering framework,
the observations potentials need only be evaluated at the positions of the relatively
small number of particles. Furthermore, since the particles cluster around areas
of high probability, and the observation potentials necessarily round the image
location to the nearest pixel, it is likely that many of these image locations will
be duplicates of each other.

Consequently, the random forests models are used in a rather different way
when a particle filter is used compared to the case investigated in 5.6.1. This
motivates an investigation of the speeds of the RIF calculation methodologies
when particle filtering is used.

Figure 7.1 and Table 7.4 show the results of an experiment conducted to assess
the different calculation methods when using a particle filter. Note when comparing
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Methodology Average Calculation Time (ms)
spatial 1256.7

spatial + memo 37.6
freq 18.6
auto 18.6

auto + memo 18.5

Table 7.4: Table of values in Figure 7.1.

to the results in §5.6.1 that this experiment also estimated the orientation and
phase variables whereas the previous experiment just estimated location and view.

The results show that despite using a smaller number of points, the frequency
domain calculations still provide a very substantial speed up compared to spatial
domain calculations. However, memo-isation of features with the spatial results in
an even more dramatic speed up than in the previous experiment. This is because
once calculated, features are more likely to be re-used later by the RIFPhase
forest or RIFOri models.

The average calculation time per frame for the best method is 18.5 ms, which
equates to around 54 frames per second. Whilst the exact value will depend on
other parameters, such as number of trees and particles used, this is a high frame
rate that is well-suited to real-time performance.

7.3.2 Detection Performance

Figure 7.2 shows the detection performance as the number of particles in the particle
set varies. As the number of particles increases, the detection accuracy generally
improves as the particle set better approximates the true posterior, however this
benefit saturates at high numbers of particles. However, there is a clear trade off
with calculation time, as a larger number of particles means more evaluations of
the observation potentials and a greater cost incurred in applying the prediction
potential and resampling operations. On balance, a particle set of approximately
1000 particles gives good detection accuracy at a reasonably high speed.

Note that the filtering parameters used (particularly the hidden weight whidden)
have a significant effect on the detection error, and different filtering parameters are
better suited to different models. Consequently, different filtering parameters (λ∗, τ
frames and whidden) have been used in Figure 7.2 in order to give a similar trade
off between true positive and false positive detection rates. This is discussed
in more detail in §7.3.3.

One significant difference between the RIFFilter and RECFilter architectures
is that the RIFFilter architecture is not slowed down so significantly by adding
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Figure 7.2: Detection error (§5.1) and calculation time with different numbers
of particles in the RIFFilter and RECFilter architectures. The feature sets were
grad322motion322_extra using the freq calculation method for the RIFFilter model,
and rec_gradmotion_10 for the RECFilter model. The RIFDetection/RECDetection
models used Ntrees = 32 and Dmax = 10, the RIFPhase/RECPhase models used Ntrees = 32
and Dmax = 8. The filter parameters were λ∗ = 0.4, τ = 2 frames and whidden = 0.3 for the
RIFFilter and λ∗ = 0.3, τ = 2 frames and whidden = 0.2 for the RECFilter. Note that
the calculation time given is for the entire filtering framework, also involving orientation
and cardiac phase estimation. The orange line shows the estimate of intra-observer
variation, the magenta line shows the estimate of inter-observer variation.

extra particles. A possible explanation for this is that the frequency-domain
calculations for the raw RIFs results in values for the entire image at once. The
speed of computationally intensive step is therefore not dependent on the size
of the particle set. The coupling calculations are however performed on a per-
particle basis. All feature calculations for the RECFilter are by contrast on a per-
particle basis, explaining why the RECFilter line in Figure 7.2 rises more steeply
as the number of particles increases. Furthermore, the evaluation of each particle’s
observation potential requires querying four different forest models corresponding
to the RECDetection and RECPhase models for the two orientation bins on either
side of the particle’s orientation, whereas the RIFFilter only requires querying
two forests, the RIFDetection and RIFPhase models.

However given the relative simplicity of the calculating each feature value in the
RECFilter compared to the RIFFilter, it is surprising that the former appears to be
significantly slower. Whilst care has been taken to create an efficient implementation
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of both algorithms, it is possible that the performance of the RECFilter could be
improved with respect to the RIFFilter by careful code profiling.

Estimated values for the inter- and intra-observer variation are also shown in
Figure 7.2. These are calculated by evaluating the additional sets of annotations
(§1.5) against the ground truth annotation set in exactly the same way as the
automatic estimates. It is clear that there is significant inter- and intra-observer
variation between the annotation sets, which reflects the degree of ambiguity in
the annotation task and provide a realistic target for the algorithm. In terms of
detection performance, the automatic algorithm performs on a par with a second
annotator, but falls somewhat short of the first human annotator in Figure 7.2.
However it should be noted that the filter parameters used in this experiment were
chosen to emphasise a reasonable false positive rate over a high true positive rate,
and much higher true positive rates can achieved at the cost of an increased false
positive rate if different parameters are chosen (see §7.3.3).

Figure 7.3 shows the performance as the number of trees and levels in the
detection forest varies. In these figures (unlike Figure 7.2), the filtering parameters
(λ∗, τ , and whidden) were chosen separately for the RIFFilter and the RECFilter to
give approximately the same trade off between true positive rate and false positive
rate using the value in §7.3.3. Comparing these plots to those in Figure 5.5
shows that the use of the particle filtering is able to significantly boost the
detection performance.

It is also clear that the effect of the number of trees and maximum number of
levels on accuracy is much less significant than in the unfiltered case. This suggests
that, by combining information from multiple frames with a strong prediction model,
the filtering architectures are able to make effective use of only reasonably accurate
observation potentials, and so can still achieve good results with only a few trees.

Increasing the number of trees and/or levels in the forest models increases the
total number of feature evaluations needed. In Figure 7.3 the fact that increasing
the number of feature evaluations slows down the RECFilter model more than
the RIFFilter is observed, as it was in Figure 7.2.

The nature of the particle filtering algorithm is such that the estimates of
the different state variables become intricately interconnected. Consequently, the
performance of the phase regression forests (the RIFPhase and RECPhase models)
can also have a significant effect on the detection performance. This effect is
demonstrated in Figure 7.4, which shows the detection error and calculation time
as the composition of the phase regression forests is varied, and the composition
of the classification/detection forests is held constant.
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(a) RIFFIlter with grad322motion322_extra feature set using the freq calculation
method. Filter parameters: λ∗ = 0.4, τ = 2.0 frames, and whidden = 0.3.
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(b) RECFilter with rec_gradmotion_10 feature set. Filter parameters: λ∗ = 0.3, τ = 2.0
frames, and whidden = 0.2. (Results for 64 are too slow to appear on these axes.)

Figure 7.3: Detection error (§5.1) and calculation time for the RIFFilter (7.3a) and
RECFilter (7.3b) architectures as the composition of the RIFDetection/RECDetection
model varies. In both cases the composition of the phase regression forest
(RIFPhase/RECPhase) was fixed at Ntrees = 32 and Dmax = 8, and 1000 particles were
used. Annotations represent the maximum number of levels. Results are averaged over
three trials on each test video due to the stochastic nature of the filter.
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(a) RIFFIlter with grad322motion322_extra feature set using the freq calculation
method. Filter parameters: λ∗ = 0.4, τ = 2.0 frames, and whidden = 0.3.
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Figure 7.4: Detection error (§5.1) and calculation time for the RIFFilter (7.3a)
and RECFilter (7.3b) architectures as the composition of the phase regression forest
(RIFPhase/RECPhase) model varies. In both cases the composition of the classification/de-
tection forest (RIFDetection/RECDetection) was fixed at Ntrees = 16 and Dmax = 12
and 1000 particles were used. Annotations represent the maximum number of levels.
Results are averaged over three trials on each test video due to the stochastic nature of
the filter.
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The results show that the effect of the phase regression forests composition is
approximately as significant that of the classification/detection forest composition.
This demonstrates how linking the variables together via the particle filter is
beneficial: in order to have high weights over a sequence of frames a particle must
not only get a high classification score in each frame, but must also receive high
scores from the cardiac phase observation potential over a sequence of frames. This
means that the relevant image patch must change in appearance over the sequence
in a way that is compatible with the cardiac phase prediction potential, i.e. must
not only look like a heart but beat like one too. The effect of this can be the
elimination of other structures that might appear like a heart view in a single
frame but do not ‘beat’ like one, such as acoustic shadowing artefacts (see for
example Figure 1.2c or the start of Figure 7.12).

One significant disadvantage of the filtering method is that the estimates it
produces are stochastic in nature, and will be different each time the algorithm
is run. For this reason, the results shown in Figure 7.3 are averaged over three
trials of the entire framework on each video in the dataset. However, there is still
significant random variation in the results, which may explain why some of the
datapoints in these figures lie away from the trendline.

7.3.3 Heart Visibility

The behaviour of a filter with regards to rejecting negative frames (i.e. ‘hidden’
hearts) is controlled by three parameters: the equilibrium hidden fraction, λ∗, the
hidden transition time constant τ , and the hidden weight whidden (§6.5.2). There
is inevitably a trade-off between achieving a high true positive rate, meaning the
frames containing a heart are correctly identified as such, and a low false positive
rate, meaning that the frames in which the heart is hidden are correctly rejected
(see §5.1 for full definitions).

Figures 7.5, and 7.6 illustrate this trade-off by plotting the true positive rate and
false positive rate for different values of λ∗, τ , and whidden for both the RIFFilter
and RECFilter architecture. The results show that there is a fairly wide range
of combinations of λ∗ and τ that give similar results, and that these results are
superior to those for the observation potentials alone (Figure 5.7). In each case,
tuning the whidden parameter gives an effective way to tune the sensitivity of the
filter, with a higher value rejecting more frames and therefore reducing the number
of false positives but also reducing the number of true positives. The choice of
the whidden parameter will therefore depend upon the particular application. For
some applications it may be acceptable to miss some of the frames containing the
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(a) The RIFilter architecture with the grad322motion322_extra feature set using the
freq calculation method. The RIFDetection model had Ntrees = 16 and Dmax = 10 and
the RIFPhase model had Ntrees = 32 and Dmax = 8.
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Figure 7.5: True positive rate and false positive rate (§5.1) for various combinations
of the λ∗, τ , and whidden parameters. Each line shows one combination of λ∗ and τ for
several values of whidden. The whidden values are annotated on the diagram. 1000 particles
were used in each case.
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(a) RIFFilter with parameters as in Figure 7.5a.
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(b) RECFilter with parameters as in Figure 7.5b.

Figure 7.6: Results for the experiments in Figure 7.5 using the generous false positive
rate metric (which does not penalise detection of ‘obscured’ cases, §5.1) rather than the
false positive rate metric.
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heart provided that those where positive detections are made are correct. For
other applications it may be more important to make sure that as many heart
frames as possible are identified.

Furthermore, the results suggest that there is little difference between the
performance of the RIFFilter and RECFilter in this regard, except that the
filtering parameters must be tuned slightly differently for the two cases.

As in Figure 5.7, there is a slight improvement in the false positive rate when
the ‘generous’ metric, which does not penalise the detection of frames labelled as
‘obscured’, is used, and this results is a horizontal left shift of the curve between
Figures 7.5, and 7.6. This effect is slightly more pronounced in the particle
filter case than in the framewise case, suggesting that a greater proportion of
the particle filter’s mistakes are less problematic detections of borderline cases
rather than random errors.

Estimates of the inter- and intra-observer agreement on detection and rejection of
frames are shown as dots on Figures 7.5, and 7.6. These show that there is room for
improvement in the sensitivity curves. Partly this is simply a result of the fact that it
is a highly subjective task to decide whether a heart is ‘hidden’ or ‘visible’ when it is
obscured by a shadowing artefact, or the probe positioned such that the view of the
heart diverges from the three views used. This is illustrated by significant difference
between the inter- and intra-observer false positive rates, suggesting that the different
annotators used different criteria to determine when to label a heart as ‘hidden’.

One approach to tackling the high false positive rate would be to alter the
training routine for the detection forest models. In the reported experiments, the
models were trained on positive examples and random background patches, and the
obscured annotation were excluded from the training dataset. Consequently, the
models were not trained to make the fine-grained distinction in borderline cases. It
is therefore likely that a training procedure that emphasised using hard negative
frames in the training would improve these results.

Another principled approach to dealing with obscured heart cases would be by
explicitly modelling the imaging shadowing and drop-out artefacts that are the
cause of many of the ambiguous cases. For example, Karamalis et al. [179] proposed
an ultrasound ‘confidence map’ that models the ultrasound physics behind the
image acquisition process in order to assess the quality of the image at each pixel.
Such as confidence map could be used to determine when the heart is obscured
in the image by an imaging artefact.
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(a) grad322motion322_extra with λ∗ =
0.4, τ = 2.0, and whidden = 0.3, κ = 0.91.
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(b) rec_gradmotion_10 with λ∗ = 0.3,
τ = 2.0, and whidden = 0.2, κ = 0.83.
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(c) intra-observer, κ = 0.91.
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(d) inter-observer, κ = 0.81.

Figure 7.7: Typical confusion matrices for RIFFilter (7.7a) and RECFilter (7.7b)
architectures, and estimates of inter-observer and intra-observer confusion. For the
automatic predictions, the RIFDetection/RECDetection forests had Ntrees = 32 and
Dmax = 10, and the RIFPhase/RECPhase forest had Ntrees = 32 and Dmax = 8. The filter
parameters were chosen to give a reasonable trade-off between false positives and misses,
based on results in §7.3.3.

7.3.4 View Confusion Performance

This section analyses the ability of the particle filter to distinguish between the
different view labels. Figure 7.7 shows example confusion matrices for the filtering
architectures, and compares them with estimates of the intra- and inter-observer
confusion calculated from the extra sets of annotations. Again, values of Cohen’s
kappa statistic are shown for the agreement between the three view classes only.
Many of the trends in these figures are the same as those discussed in §5.6.3. The
results again show that the 4C and LVOT views are commonly confused, even by
the human annotators. The 3V is again by far the most likely view to be missed,
it is likely that this is primarily the fault of the observation potentials since the
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Figure 7.8: Orientation error (§5.1) and calculation time for different numbers of
particles. These values were calculated from same trials as shown in Figure 7.2. The
orange line shows the estimate of intra-observer variation, the magenta line shows the
estimate of inter-observer variation.

same problem occurs in §5.6.3. However, Figure 7.7d shows that this is also an area
where the two human annotators cannot agree. This would possibly improve if the
training dataset had a larger number of such images and they could be considered
as separate, more clearly defined classes, as in most clinical guidelines.

It can also be seen that the majority of the false positives discussed in §7.3.3
are detected as the 4C or LVOT view.

7.3.5 Orientation and Cardiac Phase Estimation Perfor-
mance

Figures 7.8 and 7.9 show how the accuracy of the estimates of orientation and
cardiac phase vary with the number of particles. Comparing these results with
those in §5.6.5 shows that the use of the particle filter has improved the results
for both orientation and cardiac phase and in both architectures, provided that a
sufficiently large number of particles is used. This reflects the fact that in both
cases, the relationships between the values of the variables in consecutive frames is
very strong: the orientation does not tend to change dramatically within a video,
even when the probe position changes, and the cardiac phase value changes in a
predictable way through the frames. Consequently, the particle filter is able to pool



146 7.3. Results

0.00 0.05 0.10 0.15 0.20 0.25
Cardiac Phase Error

0

20

40

60

80

100

120

140

160

180

A
v
e
ra

g
e
 T

im
e
 p

e
r 

F
ra

m
e
 (

m
s
)

10050075010001500
2500

5000

100

500
750

1000

1500

2500

5000

grad322motion322_extra

rec_gradmotion_10

Figure 7.9: Cardiac phase error (§5.1) and calculation time for different numbers of
particles. These values were calculated from same trials as shown in Figure 7.2. The
orange line shows the estimate of intra-observer variation, the magenta line shows the
estimate of inter-observer variation.

together the weak and noisy measurements in each frame to produce a high-quality,
consistent estimate of these variables over the video.

Furthermore, it is clear that in the RIFFilter architecture a smaller number of
particles is needed for cardiac phase or orientation estimation than is needed for
the detection and view classification stage (Figure 7.2). This is a consequence of
the fact that the detection and view classification partition has a three dimensional
state space (two spatial dimensions and the discrete view category) to populate
with particles, whereas the orientation and cardiac phase partition have a one-
dimensional (for orientation), or two-dimensional (phase and phase rate for cardiac
phase) state space. This observation may be used to speed up the filter by using
different numbers of particles in different partitions, something that is suggested
by MacCormick and Isard [175], but not explored in this thesis.

In contrast, the RECFilter architecture requires more particles to achieve the
best performance. This suggests that the additional partitioning of the RIFFilter
(using three partitions) compared to the RECFilter (using two partitions) is able
to make better use of a small number of particles, as intended (§6.3.3).

Estimates of the inter- and intra-observer variation are also shown on Figures 7.8
and 7.9. For the cardiac phase estimates, the automatic predictions are within the
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range of the disagreement between the observers, suggesting that improvement in
these values, without more accurate annotations, would be unachievable.

However, the orientation predictions fall short of the inter- and intra-observer
variation, suggesting that there is a small amount of room for improvement here.
This is primarily due to the fairly simplistic models used in both architectures.
The orientation estimation in the RIFFilter framework is based on the complex
argument of a single raw feature, and is therefore a rather noisy estimate. In the
RECFilter case, the orientation is evaluated through the way in which the scores
from the forests corresponding to the two closest training orientations are combined.
However, this assumes a linear relationship, which is a fairly limited assumption.
In both cases, it is likely that the orientation could be improved through the use
of more sophisticated models. However, the automatic estimates presented here
are likely to be sufficiently accurate for most purposes.

Figures 7.10 and 7.11 show the effect of varying the composition of the relevant
forest models on the orientation and cardiac phase errors. The trends in the
results are rather weak, which may be a consequence of the fact that altering
the composition of the phase regression forests also affects the detection accuracy
(Figure 7.4), and the orientation and cardiac phase accuracies are only averaged
over correctly detected frames (§5.1). Generally it can be seen that increasing the
number of trees does improve accuracy, but not as significantly as it did in the
framewise tests (c.f. Figures 5.9, 5.10, and 5.11). The figures reflects the same two
trends seen in the detection accuracy: that the particle filtering does not need the
most accurate observation potentials to function well, and the calculation time of
the RECFilter is more strongly adversely affected by adding extra trees than the
RIFFilter model. The number of levels in the trees was seen to result in very
limited effects on estimation accuracy in the framewise experiments, and in the
filtering experiments is seen to have fairly unpredictable, small effects.

Generally speaking, the RIFFilter gives significantly better orientation esti-
mates than the RECFilter model (Figure 7.10). This is likely due to a combination of
two factors: (i) the fact that the RIFFilter produces direct estimates of orientation,
unlike the RECFilter model in which the observation of orientation uses models
trained for detection at different angles, and (ii) the partitioning scheme in the
RIFFilter places the orientation partition at the end of the filtering architecture,
meaning that the particles are already clustered in high-probability areas of the
location state space before reaching this partition. If a larger number (i.e. finer
grid) of training orientations was used, the first of these issues would be reduced
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(a) RIFFilter with the grad322motion322_extra feature set using the freq calculation
method. Filter parameters: λ∗ = 0.4, τ = 2 frames, whidden = 0.3. The composition of
the RIFPhase model is varied.
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for Ntrees = 64 are too slow to appear on these axes.)

Figure 7.10: Orientation error (§5.1) and calculation time as the composition of the
relevant forest model varies. 1000 particles were used in both experiments. Annotations
represent the maximum number of levels, Dmax. Results are averaged over three trials on
each test video due to the stochastic nature of the filter. Note that x-axes do not align
due to the significant accuracy difference between the two models.
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Figure 7.11: Cardiac phase error (§5.1) and calculation time as the composition of
the RIFPhase/RECPhase model varies. 1000 particles were used in both experiments.
Annotations represent the maximum number of levels. Results are averaged over three
trials on each test video due to the stochastic nature of the filter.
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at the cost of increased training time and increased memory usage at test time,
however the second issue would remain.

The best orientation estimation is seen to have an average error of around
0.01, which corresponds to approximately 11°.

The RIFFilter is also seen to outperform the RECFilter in cardiac phase
estimation (Figure 7.11). This is despite the fact that the RECPhase forest was
shown to be more accurate than the RIFPhase model when the ground truth
position and orientation was known (§5.6.5). This demonstrates the advantage
of using the RIFs for cardiac phase prediction, as this does not rely on having
an accurate orientation model when making evaluating the cardiac phase value.
The best cardiac phase estimation is seen to have an average error of around 0.04,
which corresponds to approximately 0.06 cycles.

7.4 Qualitative Evaluation

There are several qualitative observations worth discussing in addition to the
quantitative results presented in §7.3. In this section, these are illustrated with
example images and image sequences. The images in Figures 7.12, 7.13, 7.14, 7.15,
7.16, and 7.17 were taken from tests using the RIFFilter architecture with the
grad322motion322_extra feature set and an RIFDetection model with Ntrees = 32
trees and Dmax = 10 levels, and an RIFPhase model with Ntrees = 32 and Dmax = 8.

First, it is important to note that a key advantage of the particle filter over
the framewise methods presented in Chapter 5 is that the estimates it produces
are considerably smoother because it constrains the variation of the state variables
between frames. This is particularly important if the estimates are to be used in
an application involving live feedback to the sonographer, as smooth estimates are
considerably easier for a human to interpret. This is demonstrated quite starkly
in the supplementary video1 to the related journal article [163].

However, one major downside of the filtering approach is that it is vulnerable
to what may be called catastrophic failures over large parts of the video sequence.
This means sections of video where the filter has completely lost track of the true
position of the heart, and instead has erroneously locked onto some other area of
the image. An example of this is shown in Figure 7.12. Whilst rare, this sort of
failure is the cause of many of the detection errors seen in §7.3. Several factors
can reduce the risk of catastrophic failures, though they all have disadvantages:

1http://www.medicalimageanalysisjournal.com/cms/attachment/2081856061/
2072604756/mmc1.mp4 (Open Access)

http://www.medicalimageanalysisjournal.com/cms/attachment/2081856061/2072604756/mmc1.mp4
http://www.medicalimageanalysisjournal.com/cms/attachment/2081856061/2072604756/mmc1.mp4
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t = 13 t = 31 t = 51

t = 88 t = 109 t = 125

Figure 7.12: Example of a ‘catastrophic’ failure. At the start of the video, the heart is
not visible, but the filter instead locks on to an acoustic shadow artefact, mistaking it
for the 3V view (the elongated shadow is similar in appearance to the pulmonary artery
in the 3V view). This mistake then persists for over 100 frames while the heart appears
on the other side of the image. Upper half of each image automatic estimate, lower half
of each image manual ground truth annotation. See Figure 1.4 for interpretation of the
annotations. In addition the arrowhead indicates the cardiac phase variable. Times shown
are frame numbers.
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(i) – many particles a large number of particles provides better coverage of the
state space, making it less likely that the true location is missed, (ii) – high hidden
weight (whidden) many catastrophic failures begin when the heart is not visible so
the filter erroneously locks onto another area, then when the true heart re-appears,
the filter does not recover. A large hidden weight means that in this case there will
be large number of hidden particles in the background ready to find the true heart
when it re-appears, (iii) – ‘loose’ prediction potentials by overestimating the noise
in the prediction potentials, for example the motion noise in position prediction
potential, the risk of a catastrophic failure can be reduced due to better coverage
of the state space. Another approach that could be explored to reduce the risk of
catastrophic failure (described by Thrun et al. [170] among others) is injection of
random particles when the average measurement weights become low, however this
would have to be adapted to work with the hidden particles framework introduced
here, and would reduce the quality of the tracking during normal operation.

Another downside of the filtering method is that it generally takes a few frames
for the filter to lock on to the correct area of the state space at the beginning
of the video or after a hidden heart re-appears in the video. Consequently there
can be several frames of large errors across all the variables while the mean-shift
output converges onto the correct value. An example of this is shown in Figure 7.13.
The importance of this downside will depend upon the application in question.
This can be controlled to an extent by tweaking the filtering parameters. Using
‘looser’ prediction model parameters (such as a larger standard deviation of the
heart position prediction potential, or a larger probability of transition to a different
view) will help to speed up this convergence, but will also reduce the quality of
the tracking thereafter. It may be possible to adjust these parameters dynamically
to improve performance. For example, ‘looser’ parameters could be used for the
first few frames of the video to speed up the initial convergence, and/or ‘hidden’
particles could be given looser parameters than visible particles in order to speed
up convergence when the heart (re-)appears midway through a video.

Another important source of errors relates to transitions between visible and
hidden hearts. Often this process takes place gradually over several frames. In many
cases, the filter’s estimates and the manual ground truth agree that a transition has
taken place, but disagree about precisely which frame it occurred at, as this is highly
subjective. Consequently, several false positives or misses may be recorded during
this transitional sequence, but for most applications this discrepancy is unlikely
to be important. An example of this is shown in Figure 7.14.
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t = 1 t = 4 t = 7

t = 11 t = 15 t = 19

Figure 7.13: Typical example of the global localisation at the start of a video. The filter
takes a few frames to slowly converge to the correct state from the initial random particle
initialisation. Upper half of each image automatic estimate, lower half of each image
manual ground truth annotation. See Figure 1.4 for interpretation of the annotations.
In addition the arrowhead indicates the cardiac phase variable. Times shown are frame
numbers.
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t = 53 t = 69 t = 71

t = 77 t = 82 t = 86

Figure 7.14: Sequence of frames with the heart re-appearing after being obscured. The
transition is very gradual, and the automatic estimates and the manual annotations differ
in when they decide that the heart has become visible, leading to a several ‘missed’ frames.
Upper half of each image automatic estimate, lower half of each image manual ground
truth annotation. See Figure 1.4 for interpretation of the annotations. In addition the
arrowhead indicates the cardiac phase variable.
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Figure 7.15: Examples of class confusions. The 4C and LVOT are commonly confused
because of their similar appearance, especially when the image quality is low due to
motion artefacts or other problems. Upper row automatic estimate, lower row manual
ground truth annotation. See Figure 1.4 for interpretation of the annotations. In addition
the arrowhead indicates the cardiac phase variable.

Other common sources of error include class confusion between the 4C and
LVOT views due to the similarity between them (Figure 7.15), and missing the
3V view (Figure 7.16). Furthermore, there are sometimes false positives arising
for other reasons, and in some cases the reason is not apparent. Some examples
of other false positives are shown in Figure 7.17.

7.5 Performance on Portable Hardware

To demonstrate that the method does not require high-end desktop hardware to
run at reasonable speeds, the method was also run on an old, lower-specification
laptop computer. The computer in question is a mid-range laptop PC dating from
2009, whose specification may be found in the appendix (Table A.2).

A typical set of parameters was used for the test, with the RIFFilter architecture
using grad322motion322_extra features calculated using the freq method, with
an RIFDetection model with 32 trees and a maximum of 10 levels, and an RIFPhase
model consisting of 32 trees with a maximum of 8 levels.

The average calculation time per frame was found to be 65.8 ms per frame
or 15.2 frames per second, which is approaching the frame rate of the most
videos, and is certainly fast enough to provide real-time feedback, perhaps by
dropping every other frame.
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Figure 7.16: Examples of missing or mislocated 3V views. Upper row automatic
estimate, lower row manual ground truth annotation. See Figure 1.4 for interpretation of
the annotations. In addition the arrowhead indicates the cardiac phase variable.

Figure 7.17: Examples of false positive detections. Upper row automatic estimate, lower
row manual ground truth annotation. See Figure 1.4 for interpretation of the annotations.
In addition the arrowhead indicates the cardiac phase variable.
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7.6 Conclusions

The results presented in this chapter have demonstrated that the performance of
the particle filtering model described in Chapter 6 is significantly better than that
of the observation potentials applied independently at each frame. Furthermore,
the combination of RIFs and the partitioned filtering architecture that they enable
has advantages over the particle filtering method based on traditional rectangular
features in terms of both estimation accuracy and running speed. This combination
gives rise to an algorithm that both operates high frame rates and has accuracy
that is mostly similar to the estimated inter- and intra-observer variation on the
challenging clinical dataset. There are also several parameters that can be altered
to trade off run speed against accuracy as the application requires.

There is some room for improvement in the orientation estimation accuracy,
which may be achieved by designing a more powerful orientation regression model.
However the accuracy values presented here are likely to be sufficient for many
purposes. There is also some room for improvement in the trade-off between false
positive rates and true positive rates, however the significant ambiguity in the
definition of the ‘visible’, ‘hidden’ and ‘obscured’ labels suggests that tackling
this issue would require a more sophisticated way of labelling the visibility and
evaluating the estimates, as well as explicitly training the observation potentials
on borderline cases.

It is difficult to define what a ‘reasonable’ degree of accuracy to expect or aim for
in these tasks would be. This is both because of the inherent ambiguity in some of
the values being predicted and because different uses of the algorithm’s output will
place different demands on its accuracy. For example, using the output to feed back
basic information to the sonographer will not require particularly accurate results,
but using it to steer a detector that target a specific area of the anatomy at a specific
point in the cardiac cycle would need to be considerably more accurate. It seems
reasonable to assume that an output whose accuracy approaches the inter-observer
variation would be sufficiently accurate for the majority of purposes.

Furthermore, for certain purposes the quantitative accuracy of the output may
be a poor measure of its quality or usefulness. For example, if the output is used
for live feedback, errors with differentiating between the different views are likely to
be far more important than lags changing between hidden and visible during view
transitions as described in §7.4. In these cases, a better form of evaluation may be
to ask expert clinicians to ‘score’ the algorithm’s output subjectively.

The partitioning schemes presented in this work are just two examples of the
possible schemes that could be used. For example, one obvious alternative to the
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RECFilter would be to train a model to detect the heart views in any orientation
(using learning rather than features to give rotation invariance), followed by an
explicit orientation regression partition using a circular regression forest. This
would have the advantage of allowing the orientation regression stage to make use
of the small appearance changes that occur when the heart is imaged in different
orientations. However, it is likely that this would suffer from poor performance
at the initial detection stage and would require a larger variety of data to train
effectively, but may be worth investigating further.

An interesting extension to this work would be to alter the particle filtering
algorithm to give a particle smoothing algorithm. This would allow the use of
information from all frames, including future frames when producing estimates
for any frame, and consequently would give an application that operates offline
to produce a more accurate set of estimates.
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In this chapter, two extensions to the filtering architecture described in Chapter 6
are presented that enable the estimation of positions of cardiac structures such as
valves and vessels. A paper describing this work has been accepted for presentation
at the 8th International Workshop on Machine Learning in Medical Imaging at
MICCAI 2017 [180], though that paper only describes one of the two architectures
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presented in this chapter (the PartitionedStructures architecture).

8.1 Introduction

As described in Chapter 1, this thesis aims to estimate the position of cardiac
structures in the videos in addition to the ‘global’ variables considered in previous
chapters. The structures of interest considered used here are displayed in Figure 8.1.
There is one set of structures for each of the views, chosen to be points of anatomical
importance that can reliably be located in the videos as well as potentially useful
for diagnostic purposes. For example, the locations of the valves are important
for checking for the presence of conditions such as mitral or tricuspid atresia; the
locations of the base, crux and apex implicitly define the septa, which need to be
checked for septal defects; and the locations of the vessels are necessary to check for
problems such as transposition of the great arteries and coarctation of the aorta.

Each structure is assigned an index a ∈ N0, and the set of indices that are
present in view v is denoted Sv. The location of the structure with index a

in the image at time t is represented by a 2D vector qa,t ∈ R2. Additionally,
there is a visibility variable, ga,t ∈ {0, 1}, associated with each structure that
reflects whether the structure is visible in the image or hidden due to factors
such as imaging artefacts (particularly acoustic shadows), the cardiac cycle, or
being located off the edge of the image.

As each structure is represented by a 2D position variable and a binary visibility
variable and there are several such structures, the inclusion of these additional
state variables directly into the particle filtering framework described in Chapter 6
would dramatically increase the dimensionality of the state space. Consequently, a
straightforward particle filter implementation would require a very large number
of particles to sufficiently populate the high-dimensional state space and would
therefore be computationally very expensive.

This chapter presents two extensions to the filtering architectures from Chap-
ter 6, shown in Figure 8.2, that attempt to overcome this problem. One model,
PCAStructures (Figure 8.2a), uses one further partition that applies dimensionality
reduction to reduce the state dimension of the set of structure locations. The second
model, PartitionedStructures (Figure 8.2b), uses one additional partition per
structure of interest, thereby reducing the number of particles necessary for efficient
filtering. In both cases, the extra partitions may be added onto the end of the
either the RIFFilter or RECFilter architecture after the existing partitions.
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Figure 8.1: List of cardiac structures in each view and description of their location in
the image.
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As with the filters in Chapter 6, these filters use observation potentials based on
random forest models in order to evaluate the compatibility of a state value with the
observed image information. These are described in §8.2. Both models make use of a
Fourier model to capture the periodic nature of the cardiac cycle, which is described
in §8.4. Then the two architectures are described in detail in §8.5 and §8.6.

8.2 Random Forest Models for Structure Detec-
tion

As previously, architectures using both rotation-invariant features (RIFs, Chapter 3)
and traditional rectangular features are explored. In both cases, the forests are
designed such that at test time, they can share much of the required preprocessing
with the forests used for the previous stages of the filtering.

The following random forest models are used for the observation potentials
introduced later in this chapter:

Rotation Invariant Structure Detection Forest (RIFStructures): This is a
classification forest (§4.2) with an output space consisting of the S structure
classes and a background label (abbreviated BG), and thus is used to detect
the structures within the image. It is trained using a set of patches centred
on the labelled positions of the the structures, and a set of random patches
chosen from the video dataset as background patches. The model is invariant
to the orientation of the heart and structures due to the nature of the RIFs.
It is trained with a training set drawn from all points in the cardiac cycle, and
as such should be relatively robust to the image variation that it introduces.

In each experiment, the RIF feature set used is based on the set used for
the RIFDetection, RIFPhase, and RIFOri models used in that experiment.
However, the RIFStructures forest is constrained to use only features that
are derived from raw features with a radial index j that is less than some
fixed value Jstructs where this is less than the maximum radial index in the
feature set (Jstructs < J). This means that the features are gathered from a
circular area with a radius that is smaller than the heart radius, reflecting the
fact that the structures are more localised (and allowing them to be detected
closer to the edge of the image than the heart centre) whilst allowing many of
the features to be re-used by all the forest models.
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Rectangular Structure Detection Forests (RECStructures): These are also
classification forests trained with the same output labels and training set as the
RIFStructures forests. However, they make use of rectangular filters (§5.4)
instead of RIFs. Consequently, and as with the RECDetection and RECPhase
models, it is necessary to train these models at a number of different heart
orientations. In each experiment, these are the same No training orientations
that are used for the RECDetection and RECPhase models. At test time, the
forest models can share the integral images used for fast evaluation. However,
the window size from which the features are drawn, Rstruct-train, is smaller
than the heart radius Rtrain.

8.3 Summary of Notation

Because of the complexity of notation in this chapter, a summary is provided
in Table 8.1 for reference.

8.4 Fourier Position Model for a Cardiac Struc-
ture

Due to the nature of the cardiac cycle, over a short time interval the positions
of the structures are likely to be close to periodic. Furthermore, an estimate of
the cardiac phase variable, φt, for each particle is available from the cardiac phase
partition. Rather than estimate a structure’s position over the cardiac cycle in
each frame independently, a simple Fourier model is used to capture this periodic
behaviour over a sequence of frames.

In this model, the position of structure a ∈ N0, where a is an index variable
indexing the various structures (§8.1), in the image at time t is described by the 2D
column vector qa,t ∈ R2 containing the x and y components, i.e. qa,t =

[
qa,t,1, qa,t,2

]T
,

where qa,t,1 ∈ R is the x-component and qa,t,2 ∈ R is the y-component. Firstly, this
is expressed relative to the heart centre position, orientation and scale to give the
relative position vector pa,t ∈ R2, where the two are related by:

qa,t = RtestR[θt]pa,t + xt (8.1)

where R[θt] ∈ R2×2 is the 2D rotation matrix through angle θt.
The relative position vector pa,t is calculated from the current value of the cardiac

phase variable, φt, by assuming a truncated Fourier series approximation as follows:
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Symbol Meaning
a ∈ N0 The index of a structure.
v ∈ N The index of a cardiac view.
t ∈ N0 The time-step (frame index) in a video.

qa,t ∈ R2 The absolute position of structure a at time-step
t in the image.

pa,t ∈ R2 The relative position of structure a at time-step
t in the image, relative to the heart position,
radius and orientation.

ba ∈ N0 The Fourier expansion order for structure a.
ca,1 and ca,2 ∈ R2ba+1 Fourier coefficient vectors for structure a, one for

each component of the relative position vector.
ϕt ∈ R2ba+1 Vector containing a sine and cosine expansion of

the cardiac phase value φt at time t.
Sv The set of structure indices for the structures in

view v.
Bv ∈ N0 The total number of Fourier coefficients when

combining those from all structures in view v.
ĉv ∈ RBv A combined coefficient vector, comprising all the

Fourier coefficients from all the structures in view
v.

D ∈ N The dimensionality of the reduced representation
of a combined coefficient vector.

dv ∈ RD A reduced representation of the combined coeffi-
cient vector for view v.

Mv ∈ RBv×D Matrix containing the principal axes of the com-
bined coefficient vector view v.

cv ∈ RBv Mean of the combined coefficient vector for view
v.

da ∈ N0 The total number of Fourier coefficients for a
single structure a.

c̃a,t ∈ Rda A combined coefficient vector comprising all the
Fourier coefficients from a single structure a.

µ̃a ∈ Rda Mean of c̃a,t at for structure a across the entire
training set.

Σ̃a ∈ Rda×da Covariance matrix of c̃a,t at for structure a across
the entire training set.

α ∈ R Update scaling constant.
q and γ ∈ R Noise scaling constants.
ga,t ∈ {0, 1} Visibility of structure a in frame t.
gt ∈ {0, 1}S Vector containing visibility variables of all S

structures at time t.

Table 8.1: Summary of notation used throughout this chapter.
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pa,t =



ca,1,1 ca,2,1
ca,1,2 ca,2,2
ca,1,3 ca,2,3
ca,1,4 ca,2,4
ca,1,5 ca,2,5
... ...



T

·



1
cosφt
sinφt

cos 2φt
sin 2φt

...


(8.2)

=
[
ca,1 ca,2

]T
·ϕt (8.3)

If an approximation of order ba ∈ N0 is used (different orders may be used for
different structures), then the phase vector ϕt has dimension (2ba + 1) × 1 and
there are two coefficient column vectors ca,1 (for the x-component) and ca,2 (for
the y-component) each having dimension (2ba + 1) × 1.

In order to fit such a model to examples from training data, a least squares
approach is used. Suppose that a training set of N consecutive frames is used,
and that the relative positions pa,t of the structure and the cardiac phase φt value
are known in each frame. The two coefficient vectors ca,1 and ca,2 are solved for
separately by grouping the x- and y-components from all the samples into two
vectors, p̂a,1 ∈ RN containing the x-components from all samples, and p̂a,2 ∈ RN

containing the y-components from all samples:

p̂a,1 =


pa,1,1
pa,2,1
...

pa,N,1

 , and p̂a,2 =


pa,1,2
pa,2,2
...

pa,N,2

 (8.4)

Also, the phase vectors ϕt from all the training samples are stacked into a
phase matrix Φ ∈ RN×(2b+1):

Φ =


ϕT1
ϕT2
...
ϕTN

 (8.5)

Then the coefficient vectors ca,1 and ca,2 may be found by solving the following
equation in the least squares sense using a standard least squares solver:

p̂a,1 = Φ · ca,1, and p̂a,2 = Φ · ca,2 (8.6)
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However in some situations, there will be only a few training samples or poor
coverage of the whole cardiac cycle (particularly with structures such as valves
that are not visible for large parts of the cycle). This can lead to overfitting of the
coefficients. One way to avoid this is to use a low order Fourier model, but it was
also found to be beneficial to regularise the solution using a standard regularised
least squares method [172]. A diagonal prior precision matrix Λ ∈ R(2ba+1)×(2ba+1)

is specified over the coefficient vectors to penalise large values for the coefficients,
except the first coefficient (corresponding to the average x or y location.)

Λ =


0

λ
. . .

λ

 (8.7)

where λ ∈ R+
0 is a chosen precision (reciprocal variance) value.

The coefficient vectors are then found by instead solving the standard least
squares problem:

 p̂a,1
02b+1

 =
 Φ
√

Λ

 · ca,1, and
 p̂a,2
02ba+1

 =
 Φ
√

Λ

 · ca,2 (8.8)

where 02ba+1 is a (2ba + 1)× 1 vector of zeros, and
√

Λ can be obtained by square
rooting the on-diagonal elements.

Using the methods outlined in this section, a Fourier model, defined by ca,1 and
ca,2, can be fitted independently for each of the structures of interest. However
the Fourier model will vary between different sections of video due to anatomical
variation between the subjects and slight variations in viewing plane within a video.
The model for each of the structures of interest will also be closely connected to each
other, because the spatial arrangements of the structures are tightly constrained.

The two filtering models presented in §8.5 and §8.6 are similar in that they
consider the coefficients of the Fourier model to be variables to track over time,
rather than directly tracking the positions of the structures. However they differ
in the way that they represent the relationships between the coefficients of the
different structures.

8.5 The PCAStructures Model

This architecture makes use of a single filtering partition to jointly track the Fourier
model coefficients of all the structures of interest. The schematic representation is
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shown in Figure 8.2a. This is a very high-dimensional filtering problem (2(2ba + 1)
coefficients for each structure) and therefore a naïve particle filtering approach is
likely to perform very poorly. Furthermore, it is necessary to model the spatial
relationships between the different structures at one timestep.

This architecture uses principal component analysis (PCA) to both reduce the
dimension of this set of coefficients and model the relationships between them.

8.5.1 Definition of the State

PCA is a widely-used mathematical technique to find a compact representation of
a dataset that optimally captures the variation within the training data (e.g. [172]
or many other standard texts). Here, it used to find a compact representation of
the coefficient vectors ca,1 and ca,2. This occurs separately for each of the three
views, as different structures appear in each.

Suppose that there are N short video segments (each at least one cardiac cycle in
length but typically no longer than two or three cycles) containing a single cardiac
view v, and that a Fourier model has been fitted to each of the structures present in
that view (the set Sv) as described in §8.4. This gives {(ca,1, ca,2)}a∈Sv for each of
the N video segments, which combined represents a large collection of coefficients for
each of the N segments. The number of coefficients Bv used for each view is given by:

Bv = 2
∑
a∈Sv

(2ba + 1) (8.9)

All the coefficients for a given segment n and view v are placed into a single
combined coefficient vector ĉn,v ∈ RBv , which combines the coefficients for all Fourier
orders and all structures in the view (the order in which these coefficients are placed
into the vector ĉn,v is unimportant, as long as the corresponding unpacking operation
is applied at test time). The mean combined coefficient vector is then subtracted from
each coefficient vector and they are stacked to form a matrix Ĉv ∈ RN×Bv as follows:

Ĉv =


ĉT1,v − cTv
ĉT2,v − cTv

...
ĉTN,v − cTv

 (8.10)

where cv is the mean combined coefficient vector across all N training segments.
PCA proceeds by performing the singular value decomposition (SVD) of this

matrix to decompose it into Uv ∈ RN×N , an orthogonal matrix, Sv ∈ RN×Bv ,
a rectangular diagonal matrix containing the singular values along the leading
diagonal, and Vv ∈ RBv×Bv , an orthogonal matrix:
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Ĉv = UvSvVT
v (8.11)

In what follows, it will be assumed that the rows of VT
v (columns of Vv) are

normalised (i.e. have L2 norms of 1) and the singular values appear down the
diagonal of S in order of decreasing size.

Now the matrix Vv provides a mapping from a principal component representa-
tion of a coefficient vector, dv, to the centred original representation of the vector.
To create a compact representation of the coefficient vectors, the least important
principal components (those with the smallest singular values), can be discarded,
reducing the dimensionality of dv. If the dimension of dv is chosen to be D, then
the first D columns of Vv map from this reduced dv to an approximation to ĉv.

If, additionally, these columns of Vv are normalised by the standard deviation
along the corresponding principal component direction, then the mapping will move
a reduced representation dv distributed as an isotropic zero-centred unit Gaussian
into the best multivariate Gaussian approximation to the observed distribution of
the combined coefficient vectors including the relationships between coefficients (and
therefore) locations of each structure. These standard deviations may be calculated
from the singular values that appear down the diagonal of Sv. Using si as the ith

singular value, the standard deviation of the ith component of dv is:

σi =
√

s2
i

N − 1 (8.12)

If Mv ∈ RBv×D is the matrix formed by taking the first D columns of Vv and
dividing each column by the corresponding standard deviation, then the overall
transformation from Mvdv to ĉv is given by:

ĉv = Mvdv + cv (8.13)

Therefore, in order to create a reduced state representation of the structure
positions, Mv to and cv are found as above for each of the three views. An example
of a PCA decomposition produced in this way is shown in Figure 8.3.

In addition to the position of the structures, there is also a binary variable,
ga,t ∈ {0, 1}, describing whether the structure is visible or hidden. A value of 1
(hidden) models the possibility that the structure is not visible in the image due
to the probe position or due to imaging artefacts obscuring its position. These
values for all structures are gathered into the binary vector gt.

The PCAStructures model uses an additional partition with the state variables
dv,t and for v ∈ {4C, LVOT, 3V} and gt. The overall state tuple then becomes:
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st =
(
ht, vt,xt, θt, φt, φ̇t,d1,t,d2,t,d3,t,gt

)
(8.14)

To be used within the particle filtering framework (Chapter 6), a prediction
potential must be defined to model the evolution of the reduced state vectors and
the visibility variables over time. These are described in §8.5.2 and §8.5.3.

8.5.2 Structure Visibility Prediction Potential, ψg (st | st−1)

The visibility variable for each structure is treated independently and in the same
manner as the the visibility variable for the heart ht as described in §6.5.1. That
is, the hidden variable moves from hidden to visible according to a probability
matrix whose values are chosen to give rise to a given time equilibrium fraction
λ∗struct and time constant τstruct. In general these two parameters may be different
from λ∗ and τ for the heart visibility.

Furthermore, it is possible that the estimated location of the structure may
move outside of the area where features can be evaluated, (i.e. within Rstruct-train of
the edge of the ultrasound fan area). In this case, the structures are automatically
considered to be hidden. Furthermore, the mitral valve and tricuspid valve are
always considered hidden during diastole (π < φt < 2π).

8.5.3 Structure Position Prediction Potential, ψd (st | st−1)

The prediction potential for the reduced state vector dv ∈ RD must be easy to
sample from and represent realistic changes in the positions of the structures.
Furthermore, it is important that after a number of such transition processes have
been applied, the resulting value for the reduced state vector continues to be a
reasonable value. This requires that the limiting distribution of the resulting Markov
chain is the same as the prior distribution of the state vector, in a similar way to
the Markov chain for particle visibility described in §6.5.1.

This is achieved using a simple linear stochastic update model, in which the
next state value dv,t is formed from scaled version of the current state vector and
additive Gaussian noise. In the general form this may be written:

dv,t+1 = Adv,t + Gnt (8.15)

where A ∈ RD×D is an update matrix, G ∈ RD×D is a noise scaling matrix, and
nt ∈ RD is a Gaussian noise term with zero mean and covariance Q:

nt ∼ ND (n | 0D,Q) (8.16)
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Figure 8.3: Example of a PCA decomposition of structure locations for structures in
the 4C view (refer to Figure 8.1 for the definition of the structures used). (a) Shows
the structure positions reconstructed from the mean state vector, while (b), (c) and (d)
show the structure positions reconstructed from the state vectors 3 standard deviations
away from the mean in each direction along the 1st, 2nd, and 3rd principal directions
respectively. 20 points around the cardiac cycle are shown with each point represented
represented by a different colour (red-green systole, green-blue diastole), and the plot axes
show distance from the heart centre normalised by heart radius.
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Note that the states for the three different views are assumed to evolve inde-
pendently in order to reduce complexity.

The limiting distribution (the distribution to which dv,t converges as t→∞) of
such a process is a Gaussian distribution with zero mean and variance Σ∞ which is
found as the solution to the following discrete time Lyapunov equation [181]

Σ∞ = AΣ∞AT + GQGT (8.17)

Recall from §8.5.1 that the desired limiting distribution is the unit normal
distributed, i.e. Σ∞ = I. Therefore A, G and Q must be chosen to give this
limiting distribution and realistic transition behaviour. This can be achieved by
setting G = I, A = αI where α ∈ R is a scalar constant, and Q = q2I, where
q ∈ R is another scalar constant.

Then Equation 8.17 reduces to a simple scalar equation:

1 = α2 + q2 (8.18)

Consequently, if the value of q, the standard deviation of the random perturbation
to dv,t between two frames, then, assuming that q ∈ [0, 1], the parameter α must
be chosen as α =

√
1− q2 in order to give the desired equilibrium distribution.

In other words, in order to add a small random perturbation to dv,t, it must
first be scaled by α, which will have the effect of moving it slightly closer to the
origin (the mean of the distribution).

The prediction potential is therefore given by

ψ(dv,t | dv,t−1) = ND
(
dv,t |

(√
1− q2

)
dv,t−1 , qI

)
(8.19)

Note that the state vectors for all three views are updated regardless of the
value of the view state variable vt.

8.5.4 Initialisation of Particles

Before the first frame of the video is processed, the visibility and reduced state
vector for each particle are independently initialised by sampling from the fol-
lowing distributions:

• The visibility variables, ga are sampled from a discrete distribution with a
probability λ∗struct of being hidden.

• The reduced state vectors dv are sampled from a unit multivariate Gaussian
distribution.
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8.5.5 Observation Potential, ωD (st, zt)

The observation potential for the structures partition reflects the compatibility
of the the current state estimate dv,t with the image information. The particles
are reweighted only on the basis of the reduced state vector dv,t for the class that
is currently being observed, i.e. for v = vt, and the state values for the other
two views are not considered.

The first step in this process is to find the current positions of the structures from
the reduced state. This is performed by expanding to the full combined coefficient
vector ĉv,t using Equation 8.13, and then unpacking these coefficients into the Fourier
coefficient vectors, ca,1 and ca,2, for each structure a by applying the reverse of the
procedure chosen for packing (§8.5.1). The phase vector ϕt is then constructed
from the particle’s current estimate of the cardiac phase variable φt (Equation 8.2),
and Equation 8.3 is applied to give the relative structure positions pa,t. These can
then be used to calculate the absolute image positions, qa,t with Equation 8.1.

Using the absolute image locations, the score Ωa for a given structure a at
the given image location may be evaluated using the relevant random forest
model. This varies depending on which type of features (RIFs or rectangular
features) is being used:

• When using RIFs, the score Ωa is straightforwardly found as the likelihood of
class a occuring at image location qa,t according to the RIFStructures forest
model.

• When using rectangular features, the fact that the orientation is discretised
must be taken into account. The scores from two of the RECStructures
forest models are averaged based on the current heart orientation θt. θt is
rounded to the two closest training orientations θtrain,n, giving θtrain,lower below
θt and θtrain,upper above θt. Using the two forest models at the chosen training
orientations, the likelihood of class a at image location qa,t is calculated,
giving one score from each forest (Ωupper and Ωlower). The weighted average of
these two scores is used to provide the final score Ωa, where the weights are
determined according to the distance of θt from the training orientations such
that the score is linearly interpolated between the two.

Ωa = θtrain,upper − θt
θtrain,upper − θtrain,lower

· Ωlower + θt − θtrain,lower

θtrain,upper − θtrain,lower
· Ωupper (8.20)
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In both cases, structures that are hidden are given a small fixed score Ωhidden in
a similar way to when the whole heart is hidden, as described in §6.4.4.

Once the scores have been gathered from all structures in the current view vt,
they are combined into a single score for the particle by taking their mean, as follows:

ωD(st, zt) = 1
|Sv|

∑
a∈Sv

Ωa (8.21)

8.6 The PartitionedStructures Model

This architecture uses one additional filtering partition for each of the structures of
interest. The partitions are arranged into three ‘branches’ (Figure 8.2b), one for
each of the three views. This means that the resampling steps within a given branch
change the set of particles within the views but do not change the distribution
of particles between the three views, which is decided by the earlier position
and view partition.

8.6.1 Definition of the State

Each partition is identified by the index, a, of the corresponding structure. The
state vector for partition a is described by the Fourier coefficients for the relevant
structure, contained in the vectors ca,1,t ∈ R2ba+1 and ca,2,t ∈ R2ba+1 (§8.4). These
two vectors are combined into a single vector c̃a,t, where the order in which the
elements are placed does not matter as long as a consistent rule is used. For
notational convenience, let da = 2(2ba + 1) be the dimension of this state vector.

Just like in the PCAStructures architecture, there is also a binary variable,
ga,t describing the each structure’s visibility.

The full state tuple is therefore given by:

st =
(
ht, vt,xt, θt, φt, φ̇t, {(c̃a,t, ga,t)}a∈Z1,S

)
(8.22)

Note that a given particle only participates in the resampling stage after the
partition for structure a if the heart visibility variable ht = 1 and structure a is
present in the current view vt (see Figure 8.2).

8.6.2 Structure Visibility Prediction Potential, ψga (st | st−1)

The visibility prediction potential for each structure’s visibility variables operates in
exactly the same way as that for the PCAStructures model, as described is in §8.5.2.
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8.6.3 Structure Position Prediction Potential, ψc̃a (st | st−1)

The prediction potential is similar to that described in §8.5.3 for the PCAStructures

model. At training time, a mean vector µ̃a ∈ Rda and covariance matrix Σ̃a ∈

Rda×da are calculated for the coefficient vector c̃a,t, assuming its distribution to
be a multivariate Gaussian.

As in §8.5.3, the prediction potential is assumed to be a linear transition followed
by additive Gaussian noise on the centred coefficient vector, i.e. of the general form

(c̃a,t+1 − µ̃a) = A (c̃a,t − µ̃a) + Gnt (8.23)

Again, it is desirable to ensure that the limiting distribution of the Markov chain
created by the prediction potential process is the same as the prior distribution.
The limiting distribution for the centred coefficient vector has covariance matrix
Σ∞ ∈ Rda×da , which is given as the solution of the discrete time Lyapunov
equation (Equation 8.17). Therefore, to design a prediction potential whose limiting
distribution has mean µ̃a and covariance matrix Σ̃a, the update matrix is set
A = αI where α ∈ [0, 1], the covariance of the noise vector nt ∈ Rda is set
to be Q = Σ̃a ∈ Rda×da , and the noise scaling is set to be G = γI, where
γ ∈ [0, 1] and 1 = α2 + γ2.

Note that the prediction potential described above predicts each structure’s
position relative to the position of the heart centre, but conditionally independent of
the position of the other structures. However, there is no reason that this has to be
the case. In fact, the prediction potential for a certain structure could in principle
be conditioned upon the position of one or more structures from previous partitions
in order to take into account the spatial relationships between the structures. A
simple example of this would be to define the position of each structure relative
to the position of a single previous structure, rather than relative to the heart
centre. This was not pursued in this thesis due to time limitations, and because
preliminary experiments suggested the gain would not be significant. There are also
a number of practical problems with the approach, including what to do when the
position of one structure considered to be conditional on the position of another
structure, but the second structure is ‘hidden’.
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8.6.4 Initialisation of Particles

Before the first frame of the video is processed, the visibility variable and reduced
state vector for each particle and each structure are independently initialised by
sampling from the following distributions:

• The visibility variables, ga are sampled from a discrete distribution with a
probability λ∗struct of being hidden (as with the PCAStructures model).

• The coefficient vectors c̃a are sampled from the relevant multivariate Gaussian
distributions with mean µ̃a and covariance Σ̃a.

8.6.5 Observation Potential, ωEa (st, zt)

Before applying the observation potential, it is first necessary to reconstruct the
position of the relevant structure from the coefficient vector c̃a,t. First c̃a,t is
split into the vectors for the x- and y-components individually, by reversing the
packing procedure applied in §8.6.1 giving ca,1,t and ca,2,t. The phase vector
ϕt is then constructed from the particle’s current estimate of the cardiac phase
variable φt (Equation 8.2), and Equation 8.3 is applied to give the relative structure
positions pa,t. These can then be used to calculate the absolute image positions,
qa,t with Equation 8.1.

The observation potential then finds a score, Ωa, for the likelihood of struc-
ture a appearing at location qa,t following the same procedure described for
the PCAStructures model in §8.5.5. However, in the PartitionedStructures

architecture, each structure is reweighted individually, and the particle set is
resampled before the next structure is considered. Therefore, there is no need to
combine the scores from the different structures and they are applied directly
to the particle weights:

ωEa(st, zt) = Ωa (8.24)

As in the observation potential for the PCAStructures model (§8.5.5), hidden
particles are given a small fixed score Ωhidden.
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8.7 Extracting State Estimates from a Particle
Set

A point estimate for the locations of the structures can be extracted from the
particle set using the mean-shift algorithm, as described in §6.7. This can be
performed for each structure independently. Firstly, the particles vote for the
visibility of the structure by simple majority of the ga variable. If the particle
is visible, mean-shift is performed on the locations of the particles, qa,t, directly,
and not the underlying coefficient vectors that form the state. The width of the
mean shift window is Kq and the tolerance is εq.
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This chapter presents an experimental evaluation of the filtering architectures
introduced in Chapter 8 for tracking cardiac structures of interest through video
streams. At the time of writing, some of the results in this chapter have been
included in a conference paper that is under review for MICCAI 2017.

9.1 Experimental Dataset

The dataset described in §1.5 was used for all experiments in this chapter. In
addition to the global heart variables, manual annotations for the position, qa,t,
and visibility, ga,t, of each of the structures in Figure 8.1 were used to train and test
the localisation of structures using the cross-validation approach described in §5.2.
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180 9.2. Fitting Prediction Potential Models

Structure Fourier Order, ba
Crux 3
Apex 0
Base 0
Mitral Valve End 3
Mitral Valve Centre 3
Tricuspid Valve End 3
Tricuspid Valve Centre 3
Aortic Valve 3
Aorta (3V View) 1
Pulmonary Valve 1
Trachea 0
SVC 1
Spine 0
Descending Aorta 0

Table 9.1: Fourier model orders for the structures used in experiments. A value of 3 was
used for structures exhibiting significant, complex motion over the cardiac cycle, such as
valves. A value of 1 was used for structures with small displacements over the cardiac
cycle, such as the centres of vessels. A value of 0 was used for structures that remain
stationary over the cycle, such as the spine and trachea.

9.2 Fitting Prediction Potential Models

The first step in fitting the prediction potentials for either of the PCAStructures
or PartitionedStructures architectures is to fit Fourier models (ca,1, ca,2) to
short sequences of video (see §8.4). This was done by automatically searching the
videos in the training set for sequences that, according to the ground truth manual
annotations, are one cardiac cycle in length, contain only a single view of the heart,
and contain only frames where the heart is ‘present’. All such sequences that were
found in the training set videos were used to fit one Fourier model (ca,1, ca,2) for
every structure, a, in that view. Table 9.1 shows the values used for the Fourier
model orders, ba, for each structure a. These were chosen manually to capture the
degree of complexity of the periodic motion of each structure.

Once these Fourier models were fitted, each resulting Fourier model was used as
one example to fit the PCAStructures and PartitionedStructures models.

Certain parameters were held at fixed values during the fitting and testing
stages. These are shown in Table 9.2. In particular, the values for q and γ were
chosen empirically to give a reasonable trade off between the prediction potentials
being too ‘loose’ (giving poor tracking performance) or ‘tight’ (giving poor initial
localisation and recovery from error). Also the number of PCA components, D,
was chosen to give a reasonable trade-off between the amount of variation captured
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Parameter Value Description
λ 1.0 pixels-2 Prior precision (inverse variance) for the

Fourier coefficient values (see Equations 8.7
and 8.8).

D 5 The number of PCA components in the
PCAStructures model.

q 0.3 Noise standard deviation (as a frac-
tion of prior standard deviation) for the
PCAStructures prediction potential.

γ 0.3 Noise standard deviation (as a frac-
tion of prior standard deviation) for the
PartitionedStructures prediction poten-
tial.

Kq 5.0 pixels Kernel size for structure position mean shift.
εq 1.0 pixels Tolerance for the structure position mean

shift.

Table 9.2: List of filter parameter values for the prediction and mean shift algorithms of
the structures models.

by the model, and the ability of the filter to track in a high dimensional space. The
values listed in Table 7.2 were re-used for all structures experiments.

9.3 Fitting Observation Potential Models

The RECStructures and RIFStructures forest models are trained using a similar
procedure as the RECDetection and RIFFilter models (Chapter 5) with the
parameters in Table 5.1. 5000 positive samples were chosen from the training
set videos for each structure, and for each positive sample a random background
sample with a random orientation was chosen. For the RECStructures model, a
random offset angle in the range [− 2π

2No
, 2π

2No
] was then applied to each patch, such

that forest model learns to recognise all structures within its orientation range.
For all experiments in this chapter, the freq calculation method was used for

calculating RIFs. All RIF-based models used the grad422_motion422_extra fea-
ture set with the RIFStructures model using only the two innermost radial profiles
(Jstructs = 2). All rectangular-feature based models used the rec_gradmotion_10

feature set with the RECStructures model using a patch size of Rstruct-train =
Rtrain/2 = 15 pixels, such that both the RIFStructures and RECStructures

use patches of the same size.
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9.4 Evaluation Metrics

The following new evaluation metric was used for the evaluating the structure localisa-
tion:

Normalised Localisation Error This is defined for a given structure as the
normalised Euclidean distance between the detected location for the structure
and the ground truth location for the structure, where normalisation is by the
ground truth heart radius. This is averaged over all frames in which the heart
was correctly detected, as defined in §5.1, and in which the relevant structure
is visible according to both the ground truth and detection.

9.5 Results

Localisation error for the different structures with the RIFFilter and RECFilter
architectures with each of the PCAStructures and PartitionedStructures exten-
sions (giving four combinations in total) are shown in Figures 9.1 and 9.2. It is
clear that for both the PCAStructures and PartitionedStructures extensions,
the use of the RECFilter results in considerably greater localisation error for
the structures. This is primarily because of the lower orientation accuracy of the
RECFilter architecture (§7.3.5), which has in turn reduces the structure localisation
accuracy because the structure positions are represented relative to the heart
position and orientation.

There is quite a wide variation in the localisation accuracy among the different
structures. Typically those structures whose position in the image is well defined,
such as the crux, valves (mitral, tricupid, and aortic), and vessels (ascending and
descending aorta and SVC), are localised to a high degree of accuracy.

By contrast, those whose precise position is more ambiguous, such as the base,
apex, spine, and the ends of the atrio-ventricular valves are localised poorly. In
these cases, it is difficult to choose a single point on the image as the locations
of the structure. Results for the pulmonary valve and trachea are also relatively
poor. This is a result of the fact that the visibility of these structures depends
strongly on the precise imaging plane. These structures are however also typically
less important for diagnostic purposes. Due to the very laborious nature of the
annotation task no estimate of inter- or intra-observer was performed, but it is
likely that it would display a similar pattern of well and poorly localised structures.

A more detailed comparison of the PCAStructures and PartitionedStructures
models is shown in Figures 9.3, 9.4, 9.5 and 9.6, which respectively show the heart
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(a) RIFFilter using the grad422motion422_extra feature set with Jstructs = 2 and the
PCAStructures extension.
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(b) RECFilter using the rec_gradmotion_10 feature set and the PCAStructures
extension.

Figure 9.1: Normalised localisation error (§9.4) for models with the PCAStructures
extension. The visibility filtering parameters for the heart were set to λ∗ = 0.4, τ = 2.0,
whidden = 0.3, and for each structure were set to λ∗struct = 0.4, τstruct = 2.0, whidden = 0.05.
The composition of the forest models was as follows: detection forests Ntrees = 16 and
Dmax = 10, phase regression forests Ntrees = 32 and Dmax = 10, structures forests
Ntrees = 16 and Dmax = 10. The particle set contained 1000 particles.
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(a) RIFFilter using the grad422motion422_extra feature set with Jstructs = 2 and the
PartitionedStructures extension.
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(b) RECFilter using the rec_gradmotion_10 feature set and the
PartitionedStructures extension. Note the different scale due to the large
error for the apex.

Figure 9.2: Normalised localisation error (§9.4) for models with the
PartitionedStructures extension. The visibility filtering parameters for the
heart were set to λ∗ = 0.4, τ = 2.0, whidden = 0.3, and for each structure were set to
λ∗struct = 0.4, τstruct = 2.0, whidden = 0.05. Other parameters were as in Figure9.1.
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Figure 9.3: Detection error and total calculation time with different numbers
of particles for the RIFFilter architecture with both the PCAStructures and
PartitionedStructures extensions. The grad422motion422_extra feature set was
used in both cases, with Jstructs = 2. The visibility filtering parameters for the heart were
set to λ∗ = 0.4, τ = 2.0, whidden = 0.3, and for each structure were set to λ∗struct = 0.4,
τstruct = 2.0, whidden = 0.05. The composition of the forest models was as follows:
detection forests Ntrees = 16 and Dmax = 10, phase regression forests Ntrees = 32 and
Dmax = 10, structures forests Ntrees = 16 and Dmax = 10. Annotations show the number
of particles in the set.

detection error, orientation error, cardiac phase error and structure localisation
for a RIFFIlter architecture error as the number of particles in the particle set is
varied. This demonstrates the effect that adding the structure localisation stage
has on the entire framework.

These plots show that the two methods are broadly similar in terms of the
structure localisation performance. This suggests that the dimensionality reduc-
tion applied by the PCAStructures model is effective and does not reduce the
representational power of the state space to the degree that it begins to effect
localisation performance. However it also suggests that the spatial correlations
between structures captured by the PCA do not significantly improve results
over the PartitionedStructures method in which each structure’s location is
conditioned on the heart centre alone. One important difference is that the
PartitionedStructures model is significantly slower due to the larger number of
prediction potential and resampling operations that need to be applied (the number
of calculations for the observation potentials should be identical in both cases).
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Figure 9.4: Orientation error and total calculation time for the experiments in Figure 9.3.

0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075
Cardiac Phase Error

0

20

40

60

80

100

120

140

160

A
v
e
ra

g
e
 T

im
e
 p

e
r 

F
ra

m
e
 (

m
s
)

5007501000
1500

2500

5000

500
750

1000

1500

2500

5000

PCAStructures
PartitionedStructures

Figure 9.5: Cardiac phase error and total calculation time for the experiments in
Figure 9.3.
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(a) The PCAStructures model.
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(b) The PartitionedStructures model.

Figure 9.6: Structure localisation error and total calculation time for the experiments
in Figure 9.3.
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Comparing Figures 9.3, 9.4, 9.5 with their counterparts in Chapter 7 (Figures 7.2,
7.8 and, 7.9) shows that introducing the PartitionedStructures extension onto
the RIFFilter architecture slightly reduces the heart detection accuracy of the
filter, unless a large number of particles (around 5000 or more) is used. By contrast
the PCAStructures model does not suffer from this issue. This shows that the
partitioning of the state space has not completely alleviated the problems due to
its high dimension (although it is reasonable to assume that the performance is
significantly better than without partitioning). This particularly manifests itself
at the start of the video, during the initial global localisation stage. At this stage,
many of the particles will not be particularly close to the true heart centre, and
as such the location of their structures will be quite far from the true locations,
even if the output from the RIFDetection model is quite high. Applying several
update and resampling operations to the particles at this stage will exaggerate
small random variations in the RIFStructures observation potentials, which serves
to confuse the heart localisation process.

The orientation and phase accuracies do not seem to have been significantly
affected by the addition of the structures localisation extensions.

It was found that altering the composition of the structure detection forests did
not significantly alter the performance of the framework. There are also only a very
small number of frames in which structures were labelled as hidden (when the heart
itself was not marked as hidden), and furthermore the annotations here were even
more inconsistent than those for the heart visibility, consequently the analysis of
true and false positive rates for the structures did not produce meaningful results.

9.6 Qualitative Evaluation

Figure 9.7 shows the structure localisation results in some example frames. In
general, there is little difference between the results for the PartitionedStructures

and PCAStructures models. The second row is a good example of how the ‘base’
structure is poorly localised by both models due to having few distinct image features
to use to localise it, and similarly for the spine in the fourth row. The fifth row shows
significant disagreement about the locations of the spine and descending aorta.
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Figure 9.7: Example outputs from the structure localisation models. Left
PartitionedStructures model, Centre PCAStructures model, Right manual ground
truth. Frames drawn from the experiments shown in Figure 9.3 with 1000 particles. Red
dots show locations of structures.
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9.7 Conclusions

This chapter has shown that the structures extensions introduced in Chapter 8
can be used to localise a number of structures of the fetal heart to a reasonable
degree of accuracy with no user initialisation at high frame rates in clinical videos
containing multiple views. To the author’s knowledge this has not been attempted
before in the literature. This serves of an example of how such a model could be
used to automatically localise structures of diagnostic importance when developing
an algorithm for detection of CHD. Some structures are localised better than
others, depending on how well-defined their location is based on the image features.
Many of the structures of diagnostic importance, such as the centres of the atrio-
ventricular valves in the four-chamber view, and the vessels in the three vessels
view, can be localised with average distance errors of approximately 0.1 times
the radius of the heart.

The results demonstrate that the PCAStructures and PartitionedStructures
architectures are both effective ways to deal with the problem of a filtering in a
high dimensional state space. However, the PCAStructures model has a lower
computational demand and does not interfere as strongly with the localisation
and classification of the heart.

Again, it is difficult to define what would be a ‘reasonable’ acccuracy to expect
from the structure localisation results, especially as there is no estimate of inter-
and intra-observer variation to compare with in this case. The required accuracy
would again depend on the intended use of the output. However, an error of 0.1×
the radius of the heart semms likely to be sufficiently accurate for the majority
of purposes including guiding detectors to screen for particular anomalies, and
several of the structures chosen can be localised to that level of accuracy by
the presented algorithms.
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10.1 Summary of Contributions

This thesis has presented and evaluated a complete, fully automated framework for
extracting estimates of key state variables (heart location, visibility, orientation,
view, cardiac phase, and locations of cardiac structures) from fetal heart ultrasound
videos, which is a task that has previously received very little attention. The core of
the framework is a particle filtering method that captures the temporal dynamics of
the variables and their interdependencies and makes a fully probabilistic estimate
of the state variables in each frame. The probabilistic estimate is represented
non-parametrically by a particle set, which is able to represent complex multi-modal
distributions, and therefore has a high degree of robustness to the uncertainty and
ambiguity inherent in the interpretation of fetal ultrasound imagery.

The framework is defined by two sets of models: prediction potentials modelling
relationships between values in neighbouring frames, and observation potentials

191
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modelling the relationship between state variables and the information in the images.
This approach is very general and allows different learning methods and feature
sets to be used for the observation potentials, different prediction potentials to be
used and different independence assumptions to be made between the observation
and predictions potentials applied to each of the state variables. A few specific
instantiations of this general framework were designed and investigated using
prediction potentials based on simple probability distributions and observation
potentials based on random forest models.

Chapter 3 began the presentation of this framework with the observation models
by discussing the use of rotation-invariant features (RIFs) for fetal ultrasound
imagery. Such features have the advantage of naturally and efficiently dealing
with the unknown orientation of the fetal anatomy relative to the probe, which is
problematic for more traditional feature sets. Several novel contributions to the
implementation of RIFs were made, most notably the use of frequency domain
calculations, that allow the RIFs to be used at high frame rates in conjunction
with the random forests algorithm. Experimental validation in Chapter 5 suggested
that the RIF based random forest models performed at the level of, or better
than, rectangular features for the detection task, due to dealing better with the
unknown orientation.

Chapter 4 introduced a method for performing regression onto a circular output
space in a principled way using the random forests algorithm. The resulting circular
regression forests algorithm was shown in Chapter 5 to give reasonable estimates
(with respect to ground truth annotations) for the challenging task of cardiac phase
estimation within ultrasound fetal heart videos, particularly if used with motion
features extracted from the image in addition to intensity gradient based features.

Chapter 6 showed how the random forests observation models from the previous
chapters may be integrated into the particle filtering framework and combined
with prediction potentials that capture prior knowledge about the videos. Two
different architectures were evaluated: one in which the invariance of the RIFs was
exploited to partition the filter into three partitions that can operate sequentially,
and a second using rectangular filters that uses two partitions. It was in Chapter 7
found that the use of the particle filtering was able to substantially improve upon
the accuracy of the independent framewise estimates and still operate at speeds
suitable for real-time use on modest hardware.

Furthermore, it was found that the architecture using RIFs outperformed the
architecture based on rectangular features in terms of both accuracy and calculation
speed. This is likely due to a combination of two factors: firstly the superior
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performance of the RIFs in the presence of unknown orientations, and secondly
the finer partitioning of the state that the rotation-invariant observation model
permits results in more efficient use of a finite particle set.

Chapter 8 introduced two methods to extend the framework for the task
of predicting the locations of particular structures of interest represented by a
single image location. The first method is based on dimensionality reduction of
the combined locations of several structures, and tracking the resultant reduced
representation. The second method uses an additional partition of the state space
for each structure, thereby tracking each structure independently whilst making
efficient use of the particle set in the very large resulting state space. Experimental
results in Chapter 9 suggested that both methods provide an effective way to
deal with the problem in a high dimensional state space, but that the PCA-based
method has a lower computational demand.

Each part of the framework was validated on a dataset of ultrasound videos
from a clinical setting with a manually annotated ground truth. The results were
compared against estimates of inter- and intra-observer variation obtained from
repeated sets of annotations. The very high level of disagreement between these
sets of annotations, particularly regarding the visibility and view classification of
the heart, reveals the inherent ambiguities in the task and sets a realistic upper
bound for the performance that may be achieved with automatic methods.

In terms of detection error (including view classification), the error rate from
the automatic method is comparable to the inter-observer variation at around 25%
but above the intra-observer variation. The orientation error is slightly greater than
the intra- and inter-observer variation with an average cosine error corresponding
to about 11°. The cardiac phase error reaches the level of the human annotators,
with an average cosine error corresponding to 0.06 cycles. The automatic method
was found to be somewhat inferior to human annotators in terms of achieving a low
false positive rate for a true positive rate. Tackling this problem is likely to require
improving the way the data is annotated and used to train the observation potentials,
as well as how it can be more meaningfully evaluated. Structure localisation errors
were not compared to human annotators, but the best structures were localised
to an average error of 0.1 times the heart radius.

There are a number of parameter decisions to be made when implementing the
framework, many of which involve understanding some important performance trade-
offs. One key trade off is between calculation speed and accuracy, broadly defined.
There are a number of ways to improve accuracy at the expense of calculation speed,
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including choosing more expressive feature sets, increasing the number of trees in
the forest models, and increasing the number of particles in the particle set.

A second important trade-off is between the competing aims of achieving a high
true positive rate (detecting frames where the heart is present) and a low false
positive rate (rejecting frames in which the heart is hidden). This can be achieved by
altering the parameters of the heart visibility model and the hidden weight parameter.

A third important trade-off that is inherent in all particle filtering methods
is choosing the prediction model parameters to achieve the competing aims of
good tracking performance and good initial localisation performance and recov-
ery from errors.

Many aspects of the presented framework are quite general and similar ideas
may be useful in creating algorithms for other ultrasound (or natural) video analysis
tasks that require the estimation of a number of interrelated variables through time,
with strong prior knowledge and relatively weak image information.

In order to enable and encourage future work towards the goals of this thesis,
and to support open and reproducible science, source code of the implementation
used for all experiments and analysis in this thesis has been made publicly available
(see Appendix §A.1). Unfortunately, the author is not at liberty to make the
video dataset available.

10.2 Recommended Parameters

In previous chapters, various suggestions for suitable parameter values have been
made, and there has been some discussion of the inherent trade-offs behind these
choices. Overall, the recommended architecture is the RIFFilter architecture using
rotation-invariant features, along with the PCAStructures extension if structure
tracking is required. Table 10.1 provides a list of suggested values for the most
important parameters for those wishing to compare the performance of this method
against other methods.

10.3 Directions for Future Work

This section proposes four broad, overlapping directions for future work enabled
by this thesis: working towards clinical tools, extension to detection of CHD, use
of deep learning methods, and extension to other areas of fetal scanning.
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Parameter Value
Number of trees in the RIFDetection forest (Ntrees) 16
Number of levels in the RIFDetection forest (Dmax) 10
Number of trees in the RIFPhase forest (Ntrees) 32
Number of levels in the RIFPhase forest (Dmax) 10
Number of trees the RIFStructures forest (Ntrees) 16
Number of levels in the RIFStructures forest (Dmax) 10
Number of particles 1000
Image representations used for feature extraction gradient, motion
Number of radial profiles in RIF extraction (J) 3
Number of rotation orders in RIF extraction (K) 3
Fourier histogram expansion in RIF extraction (M) 2
Calculation method for RIF extraction freq
Coupling method for RIF extraction extra
Hidden particle weight (whidden) 0.3
Equilibrium fraction of hidden particles (λ∗) 0.4
Hidden particle time constant (τ) 2 frames

Table 10.1: Recommended set of parameters for a RIFFilter architecture.

10.3.1 Towards Clinical Tools and Trials

While the work presented here has been motivated by the aim of creating clinical
tools, there is still significant work to be done before this is achieved. This work
would likely have several facets.

The algorithms need to be trained and evaluated on a larger dataset featuring
longer videos and compared to the annotations of several experts. This should also
include a greater variety of views, starting with a finer classification of the right
ventricular outflow views (see §1.4.4) and possibly continuing to other views such
as sagittal views of the aortic and ductal arches (though this moves beyond the
requirements standard screening scans). This stage should also think carefully about
a more consistent and clinically useful way to deal with the ambiguity surrounding
hidden, visible and obscured hearts.

Two key assumptions of the work presented in this thesis should also be examined.
Firstly the assumption that the size of the heart in the image can be specified
in advance, based on gestational age and image magnification factors, should be
investigated empirically. If it is found that the heart size cannot be specified to a
sufficient degree of accuracy for the detection models to give good performance,
changes to the framework to allow for unknown size should be considered. This
would likely involve incorporating a ‘scale’ variable into the state tuple, with different
observation potentials trained to detect structures at different scales.
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The second assumption is that all the videos contain images with a single ‘flip
convention’, i.e. the probe is positioned such that the imaging plane is viewed
from the direction running from the fetal head to the fetal feet. It is unlikely
that it is appropriate to make this assumption in practice, as sonographers use
different flip conventions. This could be addressed in similar way to the scale,
by incorporating the ‘flip convention’ into the state tuple and using observation
potentials trained for each of the two cases.

Once the above issues have been addressed, the aim would be to produce a usable
prototype of a clinical tool that can analyse video streams in real time and present
them back to the user. The first task here is choosing suitable hardware and software
tools to implement a system that can capture and analyse ultrasound imaging data
in real time. The existing, open source PLUS framework1 is one example of an
existing project that may be able to help considerably in this stage. If computational
performance is a problem, the use of graphics processing units (GPUs) in some
key tasks in the framework could be considered. Several computational tasks in
the framework lend themselves well to the parallel nature of GPU processing, in
particular performing the FFT operations involved in calculating the RIFs, querying
a random forest model containing a large number of trees, and sampling from the
predictions independently for each particle in a large particle set.

There are then number of important decisions to be made surrounding how the
user should interact with the tool, and how the algorithm’s estimates are presented
to the sonographer or used for guidance. For example, should the user have controls
to alter the parameters of the tool, or should they be able to reset it if it fails?
Should the tool present the user with a checklist of views to be investigated, and
which have been already observed? Should the tool indicate which direction to
move the probe in order to reach the views that have not yet been observed?

Once such a prototype has been constructed, a number of clinical trials should
be conducted to determine the effectiveness of the tool for helping sonographers
of different levels of experience perform screening scans. Possible performance
metrics to monitor could include the rate at which key views are missed or captured
inadequately. Another key question is what insight can be gained from these sorts
of data aggregated across several sonographers and scanning sessions.

1https://app.assembla.com/spaces/plus/wiki, see also [182]

https://app.assembla.com/spaces/plus/wiki
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10.3.2 Extension to Automatic Detection of CHD

The most promising aspect of this work is its potential to serve as a basis for systems
that can automatically screen for CHD. However, this has not yet been explored
due to a lack of data from subjects displaying signs of CHD. Such data is difficult
to obtain in the numbers required to train and test a machine learning model.

This task is broad and open-ended due to the large variety of defects within
CHD. On top of this there will be complications due to the fact that defects
often co-occur. The different forms of CHD are likely to need different approaches.
For example, subtle and/or highly localised anomalies such as septal defects are
unlikely to adversely affect the operation of the particle filtering framework presented.
Consequently it may be possible to take the output of the existing algorithm without
alteration and use it to build a classifier to distinguish healthy from unhealthy cases
by focusing on the relevant parts (in time and space) of the video. However, other
defects such as hypoplastic left heart syndrome alter the appearance of the heart in
a significant way. Such defects would therefore likely disrupt the existing algorithm,
and therefore require alterations to the filter itself. This could take the form of extra
discrete state space variables representing healthy and unhealthy, with observation
potentials designed to reweight the particles according to these variables.

The detection of some anomalies may require more detailed analysis of tissue
motion and blood flowusing techniques such as Doppler ultrasound and speckle
tracking in addition to the raw image input.

10.3.3 Use of Deep Learning Methods

As discussed in §2.1.4, deep learning methods, and in particular convolutional neural
networks (CNNs), have produced state-of-the-art results on a number of image
analysis tasks in the last few years. It is therefore natural to explore whether this
class of methods can improve upon the performance of the framework presented
here. There are two levels at which this could operate: as a drop-in replacement for
the random forest based observation potentials, and as a fully end-to-end trained
model incorporating also the temporal model.

Firstly, the observation potentials used in this work could be replaced with
appropriate CNN-based models, and the rest of the particle filtering model left
mostly as presented. This would benefit from the highly expressive models that
can be learnt with CNNs, and potentially help overcome an important downside
of the presented framework, which is that the local RIF-based detectors cannot
capture contextual information from the rest of the image. This is relatively



198 10.3. Directions for Future Work

straightforward for the classification/detection task and has been attempted by
Sundaresan et al. [183], who used a fully convolutional network to localise the
fetal heart in the image and classify it according to view, but did not make use
of any temporal model or filtering. However, calculating a truly circular output
in a principled way for the cardiac phase regression step using CNNs is a far less
studied problem. Spatial transformer networks [184] provide a principled way of
dealing with the problem of unknown orientation.

Training a full end-to-end deep model for the task requires a fundamentally
different approach. Previous work on using deep learning methods to make
predictions from sequential inputs has focused on recurrent neural networks (RNNs)
§2.1.7). Huang et al. [185] have taken this approach to learn multi-task CNN models
to predict the heart location, classification, and orientation (but not cardiac phase)
and connect high level features using a recurrent network (under review at time
of writing). This has the crucial advantage of allowing the whole framework,
including all the feature extraction stages and temporal model, to be jointly
optimised for the estimation task in an end-to-end manner. However, unlike
the Bayesian filtering approach, it is not able to explicitly represent the filtering
distribution probabilistically and therefore may not be as robust as the particle
filtering approach to highly ambiguous sequences, and the uncertainty in the output
can not be so easily interpreted.

The works of Huang et al. [185] and Sundaresan et al. [183] were collaborative
projects that derived from this thesis.

10.3.4 Extension to Navigation in Broader Fetal Scanning

To a considerable extent, this work has drawn on ideas from the robotics literature
relating to how robotic systems navigate in uncertain environments in the face
of uncertain or cluttered sensory information [170]. Because the fetal heart is
relatively small area of the fetal anatomy and the imaging planes of interest are
approximately parallel transverse planes, it was sufficient to consider only the two
dimensions within the imaging plane.

There is considerable scope to explore applying these ideas to the broader
problem of navigation within full fetal ultrasound scanning, but this will require
explicit modelling of the full 3D nature of the problem. This could be used to
create systems that could analyse video streams from full fetal screening scans,
and estimate and display the 3D location and orientation of the probe relative to
anatomical structures, based on a learned statistical model of the fetal anatomy.
This would require designing observation potentials to identify a broad set of
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anatomical structures, and deciding on a suitable representation and degrees of
freedom for the anatomical model.

Integrating the imaging information with measurements from some sort of probe
position sensor would be a very important part of such a system, as it would
dramatically reduce the uncertainty in the inference problem. Tracking of the probe
has been successfully demonstrated before using a number of different of different
methods, including electromagnetic [186] and optical [187] trackers, some of which
are implemented in the PLUS framework (§10.3.1).
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A.1 Implementation of Algorithms

All algorithms described in this thesis were implemented by the author in the C++

programming language using the following open source software libraries:

• OpenCV 3.1 (http://opencv.org) For reading video files and basic image
processing.

• OpenMP 4.0 (http://openmp.org) For multi-threading (as implemented
as compiler extensions within GCC 5.4.0).

• Eigen 3 (http://eigen.tuxfamily.org) For linear algebra and optimisation
routines.
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Year of Purchase 2013
CPU Intel Core i7-3770

Clock Frequency 3.40 GHz
Threads 8
Cache 8 MB
RAM 32 GB

Operating System Ubuntu 16.04 GNU/Linux
Architecture x86_64
C++ Compiler GCC 5.4.0

Table A.1: Specification for the desktop PC used for experiments.

Year of Purchase 2009
CPU Intel Core 2 Duo T6400

Clock Frequency 2.00 GHz
Threads 2
Cache 2 MB
RAM 4 GB

Operating System Manjaro GNU/Linux
Architecture x86_64
C++ Compiler GCC 6.3.1

Table A.2: Specification for the laptop PC used for the experiment in §7.5.

• Boost 1.58 (http://boost.org) For a range of mathematical routines and
other basic software utilities.

Care was taken to ensure that the implementations are computationally efficient,
although some further performance gains will be possible. All C++ code was
compiled using compiler optimisations to optimise for speed.

Many non-performance-critical processes, such as offline model fitting and
analysis of results, were implemented in the Python programming language using the
Numpy (http://numpy.org), Scipy (http://scipy.org), and Matplotlib (http:
//matplotlib.org) libraries.

The code used for all the experiments described in this thesis is available
on the author’s Github profile at http://github.com/CPBridge under the GNU
public licence, and relies upon entirely open-source software. For instructions
for downloading, compiling and running the code for the full framework, please
see http://github.com/CPBridge/fetal_heart_analysis. Alternativey, certain
parts of the framework are available as stand-alone software libraries that can
be used for other projects:

• RIF extraction: http://github.com/CPBridge/RIFeatures

http://boost.org
http://numpy.org
http://scipy.org
http://matplotlib.org
http://matplotlib.org
http://github.com/CPBridge
http://github.com/CPBridge/fetal_heart_analysis.
http://github.com/CPBridge/RIFeatures
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• Random forest models: http://github.com/CPBridge/canopy

• Manual annotation tool: http://github.com/CPBridge/heart_annotation_
tool

A.2 Hardware Specifications

Unless otherwise noted, all experiments were performed on a desktop PC with
the specification shown in Table A.1. The exception to this is the experiment in
§7.5, which used the laptop PC in Table A.2

http://github.com/CPBridge/canopy
http://github.com/CPBridge/heart_annotation_tool
http://github.com/CPBridge/heart_annotation_tool
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A.3 Multi-Threaded Feature Extraction Code

The following greatly-simplified C++ programme listing shows the basics of how
raw features are calculated in a thread-safe manner.
#i n c l u d e <opencv2 / core / core . hpp> /∗ The OpenCV Library ∗/
#i n c l u d e <opencv2 / imgproc / imgproc . hpp> /∗ The OpenCV Library ∗/
#i n c l u d e <opencv2 / h ighgu i / h ighgu i . hpp> /∗ The OpenCV Library ∗/
#i n c l u d e <vector > /∗ STL Vector ∗/
#i n c l u d e <complex> /∗ STL complex numbers ∗/
#i n c l u d e <omp . h> /∗ OpenMP f o r multi−thread ing ∗/

// This c l a s s prov ide s the ro ta t i on−i n v a r i a n t f e a t u r e e x t r a c t i o n o b j e c t
c l a s s RIFeatExtractor
{

p u b l i c :
// . . .

p r i v a t e :

// Methods
void re f r e sh Image ( ) ;
void rawFeatureFrequencyCalculat ion ( const i n t f , const i n t u , const i n t m) ;
void rawFeatureFrequencyCalculat ion ( const i n t f ) ;
bool checkRawFeatureValidity ( const i n t f ) ;
// . . .

// Data
// The frequency−domain b a s i s f u n c t i o n images
std : : vector <cv : : Mat_<cv : : Vec2f>> U_freq ;
// St o r e s the complex−valued s p a t i a l domain raw f e a t u r e images
std : : vector <cv : : Mat_<cv : : Vec2f>> raw_feat_images ;
// St o r e s the FFTs o f the Four i e r histogram expansion o f the input image
std : : vector <cv : : Mat_<cv : : Vec2f>> FFT_im;
// St o re s whether each faw f e a t u r e image i s v a l i d
std : : vector <char> raw_features_val id ;

// St o r e s the value o f m−va lue s f o r each raw f e a t u r e
std : : vector <int > raw_feat_m_list ;
// St o r e s the b a s i s to use f o r each raw f e a t u r e
std : : vector <int > raw_feat_bas i s_l i s t ;
// S p e c i a l mul t i thread ing lock v a r i a b l e s f o r each raw f e a t u r e
// used to l i m i t a c c e s s to each raw f e a t u r e to a s i n g l e thread at one time
std : : vector <omp_lock_t> raw_feat_frequency_creation_thread_lock ;

// . . .
} ;

// This f u n c t i o n i s used to c a l c u l a t e a s i n g l e raw f e a t u r e f o r every p i x e l
// in the image us ing Four i e r domain m u l t i p l i c a t i o n f o l l o w e d by i n v e r s e FFT
void RIFeatExtractor : : rawFeatureFrequencyCalculat ion (

const i n t f , // raw f e a t u r e index
const i n t u , // b a s i s f u n c t i o n index
const i n t m // f o u r i e r histogram c o e f f i c e n t index
)

{
// A temporary in te rmed ia t e array
cv : : Mat_<cv : : Vec2f> temp ;

// Perform frequency domain f i l t e r i n g and s t o r e in the raw_feat_images
// array

// Element−wise product o f complex−valued FFT of r e l e v a n t c o e f f i c i e n t image
cv : : mulSpectrums (FFT_im[m] , U_freq [ u ] , temp , 0 ) ;
// I n v e r s e f a s t Four i e r trans form
cv : : i d f t ( temp , raw_feat_images [ f ] , cv : : DFT_SCALE) ;
// . . .

}
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// Overloaded v e r s i o n where the b a s i s index u and the m value are looked up
void RIFeatExtractor : : rawFeatureFrequencyCalculat ion (

const i n t f /∗ raw f e a t u r e index ∗/
)

{
// Look up the b a s i s index and the value o f m to use f o r t h i s raw f e a t u r e
// and pass to over loaded f u n c t i o n
rawFeatureFrequencyCalculat ion ( f , raw_feat_bas i s_l i s t [ f ] , raw_feat_m_list [ f ] ) ;

}

// Check the v a l i d i t y o f a raw f e a t u r e image in a thread−s a f e manner and
// r e c a l c u l a t e i f r e q u i r e d . This should be c a l l e d any time a raw f e a t u r e i s
// r e q u i r e d b e f o r e attempting to read from the raw_feat_images v a r i a b l e
bool RIFeatExtractor : : checkRawFeatureVal idity (

const i n t f /∗ raw f e a t u r e index ∗/
)

{
// . . .

// P laceho lde r f o r the r e s u l t
bool v a l i d ;

// Set the lock to prevent other threads a c c e s s i n g t h i s raw f e a t u r e
omp_set_lock(&( raw_feat_frequency_creation_thread_lock [ f ] ) ) ;

// I f i t ' s a l r eady va l id , j u s t re turn true
i f ( raw_features_val id [ f ] )
{

v a l i d = true ;
}
// I f i t ' s not a l r eady v a l i d c a l c u l a t e the f e a t u r e image
e l s e
{

rawFeatureFrequencyCalculat ion ( f ) ;
v a l i d = true ;

}

// Release the lock to a l low other threads a c c e s s again
omp_unset_lock(&( raw_feat_frequency_creation_thread_lock [ f ] ) ) ;

r e turn v a l i d ;
}

// This code g e t s c a l l e d whenever a new frame i s input
void RIFeatExtractor : : r e f r e shImage ( )
{

// . . .

// Mark any e x i s t i n g raw f e a t u r e r e s u l t s as i n v a l i d
std : : f i l l ( raw_features_val id . begin ( ) , raw_features_val id . end ( ) , f a l s e ) ;

// . . .
}

A.4 Fourier-Domain Representations of the RIF
Basis Functions

This section contains the derivation of the Fourier-domain representations of
the rotation-invariant basis functions, uj,k(r, θ), defined in §3.2.1 and specifically
Equations 3.3 and 3.4 (page 45). This representation derived here allows the
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calculation of rotation invariant features very efficiently via multiplication in
the Fourier domain.

A.4.1 Fourier Transforms of Radially Symmetric Basis Func-
tions

For what follows it will be convenient to describe image coordinates with a polar
representation, (r, θ), and also use a polar representation, (ρ, ψ), for the spatial
frequency coordinates with frequency domain radial coordinate ρ and frequency
domain angular coordinate ψ. One can move directly from the polar representation
of an image u(r, θ) to the polar representation of its Fourier transform U(ρ, ψ) using

U(ρ, ψ) =
∫ 2π

0

∫ 1

0
u(r, θ)e−irρ cos(ψ−θ)r dr dθ (A.1)

If the image is radially symmetric, i.e. a function of r only, then it can be
shown that the 2D Fourier transform is also radially symmetric, i.e. a function of
ρ only, and may be expressed in terms of the zero-order Hankel transform, H0[·],
of the radial profile of the image [188]:

U(ρ) = 2πH0[u(r)](ρ) (A.2)

The Hankel transform is an integral transform that expresses a continuous
function as the weighted sum of Bessel functions of the first kind. The nth order
Hankel transform is defined as:

Hn[u(r)](ρ) =
∫ ∞

0
u(r)Jn(ρr)r dr (A.3)

where Jn(·) is a Bessel function of the first kind of order n.
This result can be generalised for separable functions that can be expanded

into a Fourier series on the angular component [188], i.e. if

u(r, θ) =
∞∑

k=−∞
uk(r)eikθ (A.4)

where

uk(r) = 1
2π

∫ 2π

0
u(r, θ)e−ikθ dθ (A.5)

then the polar frequency domain representation may be similarly expanded in
terms of Hankel transforms of different orders
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U(ρ, ψ) = 2π
∞∑

k=−∞
i−keikψHk[uk(r)](ρ) (A.6)

The basis function uj,k(r, θ) used here is a special case of the form of Equation A.6,
with just one term in the sum. Hence, the problem of finding the Fourier domain
representations of the basis functions has been reduced to that of finding the kth

order Hankel transform of the radial profile and then substituting this into

Uj,k(ρ, ψ) = F2[uj,k(r, θ)](ρ, ψ)

= 2πi−keikψHk[pj(r)](ρ) (A.7)

A.4.2 Hankel Transforms of Cone Profiles

This section considers finding the kth order Hankel transform of a simple ‘cone’
profile. Later in §A.4.3 it shall be shown that the ‘soft histogram’ profiles used in
this thesis can be constructed from ‘cone’ profiles by superposition. Due to the
linearity of the Hankel transform, the Hankel transforms of the ‘soft histogram’
profiles (as required for the Equation A.7) may therefore be constructed from the
Hankel transform of this cone profile using straightforward superposition also. A
‘cone’ profile, qa(r), of with radius a is defined as:

qa(r) =

1− r
a
, 0 ≤ r < a

0, otherwise
(A.8)

Now, defining Q̂a,k(ρ) to be the kth order Hankel transform of qa(r), for positive k:

Q̂a,k(ρ) =
∫ ∞

0
qa(r)Jk(ρr)r dr

=
∫ a

0

(
1− r

a

)
Jk(ρr)r dr

=
∫ a

0
rJk(ρr) dr − 1

a

∫ a

0
r2Jk(ρr) dr (A.9)

However, in the higher-order transforms, issues arise due to singularities in
the indefinite integrals at x = 0. To deal with these, it is necessary to evaluate
instead the improper integral:

Q̂a,k(ρ) = lim
ε→0

(∫ a

ε
rJk(ρr) dr

)
− 1
a

lim
ε→0

(∫ a

ε
r2Jk(ρr) dr

)
(A.10)
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This may be achieved by using a Taylor series expansion of the indefinite integral
around x = 0. Integrating Equation (A.10) for positive k (this can be achieved
using computer algebra software, such as Sympy1) gives:

Q̂a,k(ρ) =
ak+2

(
ρ
2

)k
(k + 2) Γ(k + 1) 1F2

(
k
2 + 1

k
2 + 2, k + 1

∣∣∣∣∣−a2ρ2

4

)
. . .

−
ak+2

(
ρ
2

)k
(k + 1) (k + 2)

Γ(k + 4) 1F2

(
k
2 + 3

2
k
2 + 5

2 , k + 1

∣∣∣∣∣−a2ρ2

4

)
(A.11)

where 1F2

(
a0
b0, b1

∣∣∣∣∣x
)

is a generalised hypergeometric function, and Γ(x) is a gamma

function. The form in Equation A.11 is a general form for any (non-negative) value of
k.

An alternative that lends itself to more straightforward computation may be
found by rewriting the generalised hypergeometric functions in terms of Bessel and
Struve functions, giving a different form for each value of k. This can be achieved
using integral tables such as those of Rosenheinrich [189]. Experiments have shown
that these forms give more efficient implementations. These forms are given in Table
A.3 for orders k ∈ {0, 1, 2, 3, 4, 5, 6}. This table makes use of the following definitions:

Φ(x) = πx2

2 (J1(x)H0(x)− J0(x)H1(x)) (A.12)

Λ0(x) = xJ0(x) + Φ(x) (A.13)

where Hn(·) is a Struve function of order n.
Using these identities and Equation A.10 (making the substitution x = ρr), it is

relatively straightforward to arrive at the expressions in Table A.3.

A.4.3 Sets of Basis Functions

Returning to the set of basis functions defined in Equation 3.3, each of the profiles
can be written as a combination of the cone profiles from §A.4.2 (see Figure A.1
for an illustration):

pj(r) =


qa1(r), j = 0
2qa2(r)− 2qa1(r), j = 1
(j + 1)qaj+1 − 2jqaj

+ (j − 1)qaj−1 , j = 2, 3, . . . , J − 1
(A.14)

1www.sympy.org

www.sympy.org
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k Q̂a,k(ρ)

0 1
aρ3 Φ(aρ)

1 a
ρ
J0(aρ)− 2

ρ2J1(aρ) + 1
ρ2 Φ(aρ)

2 1
ρ2J0(aρ) + 2

ρ2 − 3
aρ3 Λ0(aρ)

3 8
aρ3J0(aρ)− 2

ρ2J1(aρ)− 8
aρ3 + 3

ρ2 Λ0(aρ)

4 − 1
ρ2J0(aρ) + 24

aρ3J1(aρ) + 4
ρ2 − 15

aρ3 Λ0(aρ)

5 − 8
aρ3J0(aρ) +

(
64
a2ρ4 − 6

ρ2

)
J1(aρ)− 24

aρ3 + 5
ρ2 Λ0(aρ)

6
(

1
ρ2 − 160

a2ρ4

)
J0(aρ) +

(
16
aρ3 + 320

a3ρ5

)
J1(aρ) + 6

ρ2 − 35
aρ3 Λ0(aρ)

Table A.3: Table of Hankel transforms of the conical profiles expressed using Bessel and
Struve functions (see Equations A.12 and A.13 for definitions of Φ and Λ0).

p0

p2

p1

p3

a1 a2 a3 a40

qa1

2qa2

3qa3

4qa4

... ... ... ...

=

=

=

=

−

−

− +

+

2× qa1

2× 2qa2

2× 3qa3

qa1

2qa2

Figure A.1: Geometric illustration of Equation A.14. The radial profile of each basis
function (left) can be constructed by the sum of the ‘cone’ profiles from §A.4.2 (right).
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By linearity of the Hankel transform, the Hankel transforms of the basis function
profiles can therefore be evaluated using the results in Equation A.11 or Table A.3
and substitute these into Equation A.7 giving, for positive k,

Uj,k(ρ, ψ) =



2πi−keikψQ̂a1,k(ρ), j = 0

2πi−keikψ
[
2Q̂a2,k(ρ)− 2Q̂a1,k(ρ)

]
, j = 1

2πi−keikψ × . . .[
(j + 1)Q̂aj+1,k(ρ)− 2jQ̂aj ,k(ρ) + (j − 1)Q̂aj−1,k(ρ)

]
, 2 ≤ j ≤ J − 1

(A.15)
For negative k, note that the form of Equation 3.1 is such that the basis function

for −k is the complex conjugate of that for positive k:

uj,−k(r, θ) = uj,k(r, θ) (A.16)

and therefore, using well-known results for the Fourier transform, the spectra of
the basis functions with negative k are found by simply flipping the corresponding
spectra for positive k.

Uj,−k(ρ, ψ) = Uj,k(−ρ,−ψ) (A.17)
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