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Abstract

Interpretation of ultrasound videos of the fetal heart is crucial for the antenatal diagnosis of congenital heart dis-
ease (CHD). We believe that automated image analysis techniques could make an important contribution towards
improving CHD detection rates. However, to our knowledge, no previous work has been done in this area. With
this goal in mind, this paper presents a framework for tracking the key variables that describe the content of each
frame of freehand 2D ultrasound scanning videos of the healthy fetal heart. This represents an important first
step towards developing tools that can assist with CHD detection in abnormal cases. We argue that it is natural to
approach this as a sequential Bayesian filtering problem, due to the strong prior model we have of the underlying
anatomy, and the ambiguity of the appearance of structures in ultrasound images. We train classification and re-
gression forests to predict the visibility, location and orientation of the fetal heart in the image, and the viewing
plane label from each frame. We also develop a novel adaptation of regression forests for circular variables to
deal with the prediction of cardiac phase. Using a particle-filtering-based method to combine predictions from
multiple video frames, we demonstrate how to filter this information to give a temporally consistent output at
real-time speeds. We present results on a challenging dataset gathered in a real-world clinical setting and compare
to expert annotations, achieving similar levels of accuracy to the levels of inter- and intra-observer variation.
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1. Introduction

Congenital heart disease (CHD) is one of the most
common defects affecting infants at birth and covers
a range of specific issues that affect the normal func-
tion of the heart. The established method for in utero
detection of CHD is antenatal ultrasound screening of
the fetal heart. Typical screening procedures are con-
ducted at a gestational age of 18-22 weeks and involve
the use of a two dimensional (2D) ultrasound trans-
ducer to examine visually the development and func-
tion of the different structures (Carvalho et al. (2013)).
Unfortunately, detection rates of CHD vary widely due
to a number of different factors including the training
of the sonographer (Pézard et al. (2008); Allan (2000)),
the nature of the defect, and the affluence of the region
(Hill et al. (2015)).

A recent survey in the United States of America sug-
gested that one of the key factors that limits the diagno-
sis rate is that many forms of CHD cannot be identified
from a four-chamber view alone (Hill et al. (2015)).
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Recent guidelines (Carvalho et al. (2013)) have also
emphasised the importance of using a number of dif-
ferent viewing planes, in addition to the common four-
chamber view, in order to increase the rate of diagnosis
of certain types of CHD.

Analysis of clinical fetal cardiac ultrasound videos
is a challenging task, even for humans, for a number of
reasons. Firstly, the indistinct appearance of anatomi-
cal structures in ultrasound images makes image inter-
pretation difficult. This is compounded by variations in
contrast levels and imaging parameters, as well as the
presence of imaging artefacts such as speckle, shadow-
ing and enhancement. In fetal cardiac videos (unlike
adult echocardiography), the heart may take up only
a small fraction of the screen and its location in the
image can change due to motion of the probe and/or
the fetus during scanning. The orientation of the fe-
tus relative to the direction of the propagation of sound
is also unknown and potentially variable. The appear-
ance of the heart changes significantly throughout the
cardiac cycle, and there may also be fetal motion in
the direction perpendicular to the imaging plane that
may cause the appearance to change or cause the heart
to disappear altogether. Furthermore, while scanning,
a sonographer will often review the different viewing
planes of the fetal heart in relatively quick succession.
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Computer-aided methods have the potential to im-
prove detection rates of CHD, but little previous work
has been carried out towards this aim. The focus of
this paper is the general problem of automatically esti-
mating key information of interest from videos of the
healthy fetal heart during acquisition within a standard
screening scan. This represents a critical first step in
an image processing pipeline and could support good-
quality acquisition and assist an operator in interpreta-
tion. Furthermore it provides a basis for further work
towards automatic quantification and diagnosis of ab-
normal hearts.

In order to have a thorough and useful description of
the state of the healthy heart at a given point in time,
we must estimate the key parameters including its vis-
ibility, position and orientation in the image as well as
the current viewing plane and the position in the car-
diac cycle. Our approach is to pose this problem as an
inference problem using sequential Bayesian filtering.
There are a number of reasons for this choice. Sequen-
tial Bayesian filtering techniques allow a probabilistic
belief over the ‘state’ of a ‘system’ (in our case the
heart is the system and the state is its position, orien-
tation, viewing plane and cardiac cycle position) to be
updated on-line – and often in real-time – using all the
observations that have been made so far. In particular,
they naturally account for the uncertainty in individual
observations made from the images, and balance them
against a prior model of how the ‘system’ behaves in
order to enforce temporal consistency. This is partic-
ularly important in this setting, where the information
in each frame is often relatively weak or ambiguous
due to the difficulty in interpreting ultrasonic reflection
patterns, while the temporal model of heart behaviour
over a number of frames is comparatively strong.

The outline of the remainder of the paper is as fol-
lows. Having reviewed related literature in §2, we for-
mally define our problem in §3 and outline our pro-
posed model in §4, with key components described in
§5 and §6. In §7 we describe the evaluation of the
model on a dataset of fetal heart videos captured in a
clinical setting. We present results in §8 and conclud-
ing remarks in §9.

2. Related Work

To the best of our knowledge, this is the first work to
attempt to automate analysis of fetal cardiac ultrasound
videos. Previous authors have successfully performed
view detection in images obtained from adult echocar-
diographic images using a variety of techniques (Agar-
wal et al. (2013); Wu et al. (2013); Zhou et al. (2006);
Park et al. (2007); Qian et al. (2013); Kumar et al.
(2009); Ebadollahi et al. (2004)), while others have
had success in automatic recognition of other fetal
structures in images (Carneiro et al. (2008); Rahmat-
ullah et al. (2012); Namburete et al. (2013); Yaqub

et al. (2012)) and, more recently, in videos (Maraci
et al. (2014); Chen et al. (2015)). Finally, some work
has attempted to estimate a more detailed description
of the adult heart in echocardiographic data in the
form of boundaries (Nascimento and Marques (2008);
Carneiro and Nascimento (2013); Yang et al. (2008)).

2.1. View Detection in Adult Echocardiagraphy
Several approaches to view detection in adult

echocardiography make use of global image properties
in order to deduce the view label. For example, Agar-
wal et al. (2013) use a histogram of oriented gradients
(HOG) descriptor on the whole image, broken into four
non-overlapping blocks. This can distinguish between
two very different views (long axis and short axis) with
a support vector machine (SVM) classifier. Wu et al.
(2013) employ a similar method, using ‘GIST’ descrip-
tors (Oliva and Torralba (2001)) in 16 image blocks
instead of HOG descriptors. Zhou et al. (2006) use
a multi-class classifier based on LogitBoost and rect-
angular filters (‘Haar-like’ filters) in order to distin-
guish between apical two-chamber and four-chamber
views. Such global methods are not well-suited to fe-
tal echocardiography because they assume a relatively
consistent layout of frames, but in fetal imagery the
position and orientation of the heart is unknown. Also,
in our application, only small areas of the fetal images
are relevant to view classification, and the rest of the
image is taken up by the fetal abdomen and the womb.

This is overcome, to some extent, in the work of
Park et al. (2007), which builds on the work in Zhou
et al. (2006) by adding a left ventricle detection stage,
which is then used to position the multi-class view
classifier in the image. However, this relies upon the
appearance of the left ventricle being fairly consis-
tent between views, and there is unfortunately no such
guarantee of consistency in the fetal views of interest
to us. Furthermore, although it solves the problem of
unknown position it does not solve the problem of un-
known orientation.

Other methods rely on first detecting keypoints in
the frame. Qian et al. (2013) detect space-time inter-
est points in the video stream and describe them using
a 3D scale-invariant feature tranform (SIFT) descrip-
tor (in the two spatial dimensions plus time). Sim-
ilarly, Kumar et al. (2009) detect interest points us-
ing the SIFT keypoint detector in the motion magni-
tude image, and describe them using local histograms
of motion magnitude and intensity. In both cases, the
extracted descriptors are quantised according to a pre-
trained codebook, and an SVM classifier is used on
the codebook histogram for classification. Such ap-
proaches are also unlikely to be effective in fetal im-
agery for the same reasons as the global methods. It is
also difficult to estimate other information such as po-
sition, orientation and cardiac phase information from
the frames using this approach.
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Ebadollahi et al. (2004) first use the grey-scale sym-
metric axis transform (GSAT) to detect the “blobs”
that are potential heart chambers. They then connect
them in a Markov Random Field (MRF) graph struc-
ture in order to label the chambers and hence deduce
the view label. This approach depends on reliable de-
tection of chambers, and the authors showed that ac-
curacy dropped dramatically when chamber detection
was not reliable, as is likely to be the case in fetal imag-
ing where structures other than the heart are visible.

2.2. Structure Detection in Fetal Ultrasound Imagery
Several authors have used ensemble methods that

combine weak classifiers based on rectangular block
filters to detect particular structures in fetal ultrasound
imagery. For example Carneiro et al. (2008) used a
Probabilistic Boosting Tree and rectangular filters to
detect a number of different structures including the
fetal head, abdomen and femur. Rahmatullah et al.
(2012) and Namburete et al. (2013) used similar fea-
tures and an Adaboost classifier to detect abdominal
and cerebral landmarks in fetal images, and Yaqub
et al. (2012) used random forest classifiers with rectan-
gular filters for cerebral structures. We draw on these
works by using random decision forests for detection
of and discrimination between the different fetal heart
views. However since rectangular block filters do not
deal well with unknown orientations, we have instead
chosen to use a alternative set of rotation invariant fea-
tures (see §6.1).

One approach to fetal ultrasound video analysis is
that of Maraci et al. (2014), who model the frames
in short video sequences as the output of a linear dy-
namical system, and construct a SVM classifier based
on kernels between the model parameters in order to
detect subsequences containing structures of interest.
This method provides a general method for exploiting
the information contained within motion patterns for
detection. However it detects structures in time but not
space and is not well suited to on-line applications as
the complete sequence is needed to deduce model pa-
rameters.

Perhaps the work with the most similar aims to ours
is that of Chen et al. (2015), who use a deep architec-
ture that combines a spatial convolutional neural net-
work and a temporal recurrent neural network to make
use of temporal context features for standard viewing
plane detection in fetal ultrasound videos. Unfortu-
nately, that approach requires a large amount of train-
ing data and the technique has not yet been used for full
state tracking in the sense that we are attempting here.
Gao et al. (2016) have recently demonstrated that the
data requirements for using deep networks with fetal
ultrasound can be reduced by using transfer learning
from models trained on natural images. However, nei-
ther of these papers are specifically dealing with the
fetal heart.

2.3. Boundary Tracking in Adult Echocardiagraphy
Another area of related work is automatic boundary

tracking in (adult) echocardiography using 2D (e.g. Ja-
cob et al. (1998); Nascimento and Marques (2008);
Carneiro and Nascimento (2013)) or 3D (e.g. Yang
et al. (2008)) video data. Like our work, these algo-
rithms track a high-dimensional representation of the
heart as it evolves through video frames, and like in
this paper, they tend to use a strong temporal prior
model in order to provide robustness to ambiguous im-
age information. For example, in early work Jacob
et al. (1998) used a Kalman filter to model the evolu-
tion of the left ventricular boundary. Nascimento and
Marques (2008) built on this with multiple predictive
models and robust data association to eliminate erro-
neous boundary candidates. Carneiro and Nascimento
(2013) track points on the left ventricle endocardium
using a robust particle filtering framework that couples
a linear transition model (in fact one model for dias-
tole and another for systole) with an observation model
built with deep neural networks. Such techniques are
also applicable for the higher dimensional problem of
3D boundary tracking, such as the work of Yang et al.
(2008), which uses a prediction model based on man-
ifold learning of left ventricle boundary trajectories,
and combines it with an observation model using prob-
abilistic boosting trees.

Whilst the methodologies in these papers are re-
lated to our work, their aims are somewhat different
from ours as they specifically aim to track the ventri-
cle boundary, and assume carefully captured data that
reliably contains the boundary of interest and in which
there are no changes in viewing plane or significant
changes in heart location. Our aim is to provide a more
broadly applicable set of measurements and descrip-
tions of fetal heart scans, that could could provide use-
ful information in less constrained scanning sessions.

3. Problem Definition

We formulate our problem within the framework of
Bayesian filtering. We therefore have an unobserved
state, st, at time t that contains variables describing the
visibility of the heart, the location of the heart centre in
the image, the current view category label, the orienta-
tion of the heart in the image, and the current cardiac
phase. We wish to estimate this state from image data
at test time.

To demonstrate our approach we use a slight simpli-
fication of the viewing plane taxonomy that is recom-
mended for visualisation during a fetal cardiac assess-
ment (Carvalho et al. (2013)) and define three view-
ing plane labels: the four chamber (4C) view, the left
ventricular outflow tract (LVOT) view, and the three
vessels (3V) view. This gives a discrete, categorical
view label variable vt ∈ {4C,LVOT, 3V}. The defini-
tions of the location of the heart centre xt ∈ R2, in
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LV/RV left/right ventricle, LA/RA left/right atrium, (d)Ao (descending) aorta, PA pulmonary artery, 
SVC superior vena cava, Tr trachea, Vb vertebra, Rb ribs 

LVOT

LV
RV

LA

dAo

Ao

Rb
Vb

3V

Ao 

dAo

PA

Tr
SVC

Rb Vb

4C

LV

RV

LA

dAo

RA

Rb Vb

Figure 1: Definition of the three viewing planes and their annotations. Top row schematics showing the anatomic
structures visible within the fetal abdomen in each view. Bottom row example image and annotation. The colour
scheme introduced in this figure will be used throughout the article (cyan four-chamber (4C) view, green left
ventricular outflow tract (LVOT) view, yellow three vessels (3V) view).
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Figure 2: 2D ultrasound images of the fetal heart (four-
chamber view). The six images appear at different
points in the cardiac cycle. We represent cardiac phase
by a circular variable in the range 0 to 2π.

pixels, and the heart orientation θt ∈ [0, 2π), defined
anti-clockwise from the increasing x-direction, differ
for each of the three views.

Definitions of these views and their coordinate sys-
tems are shown in Fig. 1. The four chamber view con-
tains all four chambers, with the centre at the crux. The
orientation is defined by the orientation of the interven-
tricular septum. The radius is defined in this view as
that which encompasses both atria. The left ventricu-
lar (aortic) outflow tract view is defined by the pres-
ence of the aorta leaving the left ventricle. The centre
is defined by the centre of the aorta where it crosses the
interventricular septum and the orientation is again de-
fined by that of the interventricular septum. The three
vessels view is defined by the simultaneous presence
of the pulmonary artery, aorta and superior vena cava.
The centre is defined as the centre of the pulmonary
artery at the point where it is in line with the other two
vessels, and the orientation is defined by that of the
right wall of the pulmonary artery. These three planes
can be viewed in sequence by sweeping the probe in a
cephalad direction from the four-chamber view.

The cardiac cycle is described by a cardiac phase
variable φt ∈ [0, 2π) in rad, where φt = 0 denotes end-
diastole and φt = π denotes end-systole, and other val-
ues are interpolated linearly between these key points
(see Fig. 2). Because the heart rate in the videos is
unknown but relatively constant, we find that using a

second-order model for the cardiac phase is advanta-
geous. Therefore the state vector also contains the cur-
rent cardiac phase rate φ̇t ∈ [φ̇min, φ̇max] in rad s−1 (i.e.
the rate of change of the cardiac phase variable with
respect to time), where hard limits are placed on the
permissible values for the phase rate to avoid tempo-
ral aliasing and other unexpected behaviour. By con-
trast, we find that using second-order models for posi-
tion and orientation is unnecessary because changes in
these values are small.

Finally we track the visibility of the heart with a
Boolean variable ht ∈ {0, 1} , which represents whether
the heart is currently visible (0) or hidden (1). The in-
tention is to allow the algorithm to cope with frames
where the heart is not visible or heavily obscured
due to imaging artefacts or slight misalignment of the
probe, rather than gross misalignment of the probe. We
therefore assume that when the heart is hidden dur-
ing the scanning process, it makes sense to continue
to track the other state variables because the heart will
soon become visible again in a similar state to that in
which it was last observed.

If the gestational age of the fetus and magnification
factor of the ultrasound system are known, the size of
the heart in the image is relatively well-constrained and
could be estimated from fetal growth chart, for exam-
ple (Kim et al. (1992)). For this reason, we choose to
assume that the fetal heart size (radius r) is known to
the algorithm at test time. However, in principle, the
heart size could be incorporated into the state vector as
well.

The six state variables are grouped together to form
the state vector, st, of the system, which we estimate
on-line from unseen videos.

st =



ht

vt

xt

θt

φt

φ̇t


(1)

Our aim is to predict the state vector st at time t, us-
ing all the image information z0:t available up to this
point. This is a filtering problem, and the correspond-
ing posterior distribution, p(st | z0:t), is known as the
filtering distribution.

Unfortunately, there is inherent ambiguity in many
of the variables that we are trying to estimate, which
limits the accuracy it is possible to achieve. For exam-
ple, the categorisation of the different viewing planes
is not clear in some cases, and the cardiac phase is dif-
ficult to measure with a high degree of accuracy from
video data alone.
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4. Proposed Model Definition

In general terms, the sequential Bayesian filtering
problem is solved by applying the recursive Bayesian
filtering equations (Doucet et al. (2001); Thrun et al.
(2005)). However, exact application of these equations
is only possible in a few restrictive special cases. One
such case is when the variables that make up the state
are discrete, in which case the problem reduces to the
well-known hidden Markov model. It is possible to
discretise a continuous state onto a finite grid in order
to create a discrete state, and then solve the resulting
discrete problem. However, in our case a fine grid over
each continuous dimension of the state space would be
needed to give useful results. This would result in a
very large number of discrete states, meaning that the
resulting filter would likely be inefficient.

A second common case where exact inference is
possible is where the state variables are continuous,
the state transition model is linear, and the distributions
over the observed and state variables are all Gaussian.
The resulting algorithm is the Kalman filter. Unfortu-
nately, the Kalman filter would not be able track our
state, since it consists of a combination of real-valued
variables (position, cardiac phase rate), discrete-valued
variables (visibility, viewing plane label), and circu-
lar variables (orientation, cardiac phase). Furthermore,
the assumption of Gaussian likelihood distributions is
restrictive and more complex models are needed to
cope with the challenging task of recognising the pat-
terns found in fetal ultrasound images.

However, it is possible to relax many of these re-
strictions if one is prepared to accept approximate in-
ference methods in place of exact inference. Fortu-
nately, excellent results can be achieved in practice us-
ing approximate methods. We therefore turn to parti-
cle filters, which have become an established method
in computer vision for a number of recursive esti-
mation problems due to being effective, efficient and
highly flexible (Doucet et al. (2001)). A particle filter
is a stochastic model that approximates the distribu-
tion over the state at each time point with a large set of
weighted samples (‘particles’) drawn from it. At each
time step, the particles evolve in the prediction step ac-
cording to a prior model of the system’s behaviour and
are then re-weighted and resampled in an update step
according to some observation model and the newly
observed data.

The standard particle filtering algorithm assumes a
generative model for the observations zt given the cur-
rent state st, and hence the distribution over the unob-
served state given the observation is implicitly mod-
elled via Bayes’ rule. However, using generative mod-
els involves unnecessary modelling of the joint proba-
bility distribution and in practice limits the flexibility
of the models that can be used. We therefore choose
to use the conditional random field filter (CRF-filter)

st−1

zt−1

st

zt

ψo(zt, st)

ψp(st, st−1)

st+1

zt+1

Figure 3: Graphical structure of the CRF-filter model.
At each timestep, t, there is a node representing the
state st and a node representing the observed image zt.
A prediction potential ψp(st, st−1) measures the com-
patibility of successive states and an observation po-
tential ψo(zt, st) measures the compatibility of a state
value and the image evidence.

introduced by Limketkai et al. (2007), which is a sim-
ple modification of the standard particle filter where
general prediction and observation potential functions
model the interactions between variables in the cliques
of an undirected graphical model. The graphical struc-
ture of the CRF-filter is shown in Fig. 3. Intuitively, the
prediction potential, ψp(st, st−1), measures the compat-
ibility of the current state and previous state, and the
observation potential, ψo(zt, st), measures the compat-
ibility of the current state and the current observation.
In order to make use of the particle filtering paradigm,
it is necessary to be able to sample from the prediction
potential. However, the observation potential function
can in principle be any non-negative function of its ar-
guments, which affords us far greater modelling flexi-
bility. This allows us to define complex, discriminative
observation potentials using the random forests algo-
rithm.

The particle set in our algorithm is updated at each
time step using the procedure summarised in Algo-
rithm 1. In the following two sections we describe the
two key remaining parts of our model: §5 describes the
prediction model used to update the particles, and §6
describes the specification of the observation potentials
used to re-weight the particles.

5. State Evolution Model

5.1. State Update
Recall from §4 that the particle filtering state-update

step takes each particle and stochastically updates it
according to a prediction potential function at each
time step. Because of the need to sample from the
prediction potential function, it is realised as a true
conditional probability distribution, i.e. ψp(st, st−1) =

p(st | st−1). To simplify the model, we assume that the
changes in several (but not all) of the state variables are
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Input: a set of NP particles s(i)
t−1 with associated weights w(i)

t−1, i = 0, . . . ,NP − 1, the observed image zt

Output: a new set of NP particles s(i)
t with associated weights w(i)

t , i = 0, . . . ,NP − 1

Ne f f ←
1∑NP−1

i=0

(
w(i)

t−1

)2 {calculate the effective number of particles}

if (Ne f f < Nthresh) then {if effective sample size is low}
for all particles i in the set i = 0, . . . ,NP − 1 do

sample ji ∼ P ( ji = k) = w(k)
t−1 {choose new particle index according to the particle weights}

end for
for all particles i in the set i = 0, . . . ,NP − 1 do

s(i)
t−1 ← s( ji)

t−1 {update resampled particle}
w(i)

t−1 ←
1

Np
{reset weights}

end for
end if
for all particles i in the set i = 0, . . . ,NP − 1 do

sample s(i)
t ∼ ψp(s(i)

t , s
(i)
t−1) {state update according to Algorithm 2}

w(i)
t ← w(i)

t−1 · ψo(z(i)
t , s

(i)
t ) {re-weight the particles (see §6)}

end for
for all particles i in the set i = 0, . . . ,NP − 1 do

w(i)
t ←

w(i)
t∑NP−1

j=0

(
w( j)

t−1

) {re-normalise the particle weights}

end for
Algorithm 1: A single step of the particle filtering algorithm

independent of each other so that the distribution can
be decomposed as follows:

p(st | st−1) = p(ht | ht−1)×
p(vt | vt−1)×
p(xt | xt−1, θt−1, vt, vt−1)×
p(θt | θt−1, vt, vt−1)×
p(φt | φt−1, φ̇t−1)×
p(φ̇t | φ̇t−1) (2)

We now describe each of these terms in turn.

5.1.1. Visibility Update
At each time step, a hidden particle becomes visi-

ble with a fixed probability ph→v, and a visible particle
becomes hidden with a fixed probability pv→h, i.e.

p(ht | ht−1) =


ph→v, ht = 0, ht−1 = 1
1 − ph→v, ht = 1, ht−1 = 1
pv→h, ht = 1, ht−1 = 0
1 − pv→h, ht = 0, ht−1 = 0

(3)

These probabilities are chosen carefully to give a de-
sired equilibrium fraction of hidden particles, i.e. the
fraction of particles that are hidden when the stationary
distribution of the resulting Markov chain is reached
assuming that all particles are re-weighted equally. If
we specify a desired hidden fraction at equilibrium of

qh, then we must choose

pv→h = ph→v
qh

1 − qh
(4)

to ensure that this equilibrium is achieved.

5.1.2. Viewing Plane Update
The probability of a transition between the differ-

ent viewing planes is implemented simply as a discrete
distribution with a constant probability of moving to
each new state:

p(vt | vt−1) =

psame, vt = vt−1

pchange, vt , vt−1
(5)

where generally psame >> pchange. However, it is of-
ten helpful to slightly overestimate the probability of
transition to allow the filter to recover from mistakes.

5.1.3. Location Update
Because the heart centre, xt, is defined differently in

each view (see Fig. 1) it is necessary to model the po-
sition change that occurs when the view changes. We
use a 2D Gaussian distribution to model each offset.
The distributions are learnt at training time relative to
a heart at orientation zero and with unit radius, giving
relative offset distributions with means µ̂v1→v2 and co-
variances Σ̂v1→v2 , where the ‘·̂’ is used to distinguish
the relative distribution parameters. At test time, these
are then scaled by the radius r and rotated by the orien-
tation θt−1 to give the absolute mean and covariance of
the offset. Furthermore, we attempt to track the likely
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changes in heart centre position using a simple off-the-
shelf optical flow estimator (Farnebäck (2003)), giv-
ing a dense estimate of the displacement field m(x) be-
tween the previous frame and the current frame.

Specifically we have:

p(xt | xt−1, θt−1, vt, vt−1) = N2D(xt ; µt,Σt) (6)

where the (absolute) mean and covariance are given
by:

µt = xt−1 + m(xt−1) + rR[θt−1]µ̂vt−1→vt (7)

Σt = rR[θt−1]Σ̂vt−1→vt R
T
[θt−1] (8)

Here, N2D( · ; µ,Σ) is the probability density func-
tion (PDF) of a 2D Gaussian distribution with mean
µ and covariance Σ, and R[θ] is the 2 × 2 rotation
matrix representing a rotation through angle θ. Note
that we constrain the mean of the relative offset dis-
tribution, µ̂v1,v1 , to be zero when the view does not
change. However the covariance, Σ̂v1,v1 , is non-zero to
represent random motion. In practice, sampling from
the 2D Gaussian is achieved using the precomputed
Cholesky decomposition of the covariance matrix (see
Algorithm 2).

5.1.4. Orientation Update
The change in orientation accompanying each view

transition is modelled by a wrapped normal distribu-
tion (Jammalamadaka and SenGupta (2001)) as this
gives rise to a simple sampling method. Each view
transition uses its own mean, ξ̂v1→v2 and covariance
τv1→v2 for the orientation offset, which are learnt at
training time:

p(θt | θt−1, vt, vt−1) =WN(θt ; ξt, τv1→v2 ) (9)

where

ξt = θt−1 + ξ̂vt−1→vt (10)

and WN( · ; ξ, τ) is the PDF of the wrapped normal
distribution. Again we assume zero mean but non-zero
variance when no view transition has occurred.

5.1.5. Cardiac Phase Update
The second order cardiac phase model applies a de-

terministic cardiac phase update according to the cur-
rent cardiac phase rate (in rad s−1)

φt = φt−1 +
φ̇t−1

∆t
(11)

where ∆t is the (constant) time elapsed between video
frames. The purpose of dividing by ∆t here is to ensure

that the state evolution model is not sensitive to the
frame rate of the video being analysed.

5.1.6. Cardiac Phase Rate Update
Finally, to model the uncertain and variable cardiac

phase rate, it is updated according to simple Gaussian
noise with standard deviation υ:

p(φ̇t | φ̇t−1) = N1D(φ̇t ; φ̇t−1, υ) (12)

This choice of state evolution model leads to a
straightforward and efficient sampling algorithm, as
outlined in Algorithm 2.

5.2. Initialisation

Before the first video frame, the set of particles
s(i)

0 , i = 0, . . . ,Np − 1 is randomly initialised by draw-
ing samples from initial distributions independently for
each of the state variables. The initial distributions are:
a discrete distribution representing the intended equi-
librium hidden fraction qh for the hidden/visible vari-
ables h, a discrete uniform distribution for the class
label variables v, a continuous uniform distribution
within the ultrasound fan area for the location vari-
ables x, a circular uniform distribution for the orien-
tation and phase variables θ and φ, and a gamma dis-
tribution fitted from the training set for the phase rate
variables φ̇. The particle weights are initialised to a
uniform value w(i)

0 = 1
N .

6. Observation Model

The purpose of the observation potential function is
to model the compatibility of a hypothesis about the
current state, st, with measurements from the observed
image, zt (see Fig. 3). This process is performed differ-
ently for hidden and visible particles. The overall form
of the observation potential is:

ψo(st, zt) =



ψa(vt, xt | zt)×
ψb(φt | vt, xt, zt)× ht = 0
ψc(θt | vt, xt, φt, zt),

whidden, ht = 1

(13)

The observation potential for a hidden particle is a
constant value, whidden (see §6.5). We choose to de-
compose the observation potential function for non-
hidden particles into three terms relating to the differ-
ent variables that form the state. The first term, ψa(·),
acts as a detector for a given heart view (in any orien-
tation and phase) at a given position in the image. The
second term, ψb(·), is a cardiac phase prediction term
given the view classification and position. The final
term, ψc(·), predicts the orientation given the predicted
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Input: a particle st−1 at time t − 1 described by associated variables vt−1, xt−1, θt−1, φt−1 and φ̇t−1, and a motion
field estimate m(x)

Output: an updated particle st at time t described by associated variables vt, xt, θt, φt and φ̇t

sample ht according to the discrete distribution in Equation 3
sample vt according to the discrete distribution in Equation 5
sample n ∼ N2D(n ; 0, I2×2) {standard i.i.d. 2D Gaussian noise}
R← r × rotation matrix(θt−1) {calculate rotation and scaling matrix}
xt ← xt−1 + m(x) + R

(
µ̂x,vt−1→vt + cholesky(Σ̂x,vt−1→vt )n

)
{find position update}

sample ζ ∼ N1D(ζ ; 0, 1) {standard Gaussian noise}
θt ← θt−1 + µ̂θ,vt−1→vt + σ̂θ,vt−1→vtζ {update the orientation}
φt ← φt−1 +

φ̇t−1
∆t {update the cardiac phase}

sample ζ ∼ N1D(ζ ; 0, 1) {standard Gaussian noise}
φ̇t ← φ̇t−1 + σφ̇ζ {update the cardiac phase rate}

Algorithm 2: Algorithm for sampling a single particle from the prediction potential

view classification, position and cardiac phase. Note
that the cardiac phase rate is not observed explicitly,
but rather observed implicitly by successive updates of
the cardiac phase variable.

In order to construct models for the first two terms,
we make use of random decision forests (Breiman
(1999, 2001)) for three key reasons. Firstly, they are
flexible and a similar algorithm can be applied to a va-
riety of tasks, including classification and regression.
Secondly, they are usually highly accurate discrimi-
native classifiers/regressors and can naturally manage
complex data without the tendency to overfit. Finally
they can be highly efficient, particularly as only a sub-
set of the available features need to be evaluated in or-
der to make a decision. This is particularly important
when evaluating each feature is relatively expensive.

In §6.1 we describe the image features we use for
these three terms, and then in §6.2, §6.3, and §6.4 we
describe the three terms in turn. In §6.5 we explain the
choice of observation potential for hidden particles.

6.1. Rotation Invariant Image Features

In this work we choose to use rotation invariant fea-
tures (RIFs) to describe circular regions of the image
(as first introduced by Liu et al. (2014) and used in our
earlier work, Bridge and Noble (2015)). This allows us
to test the image at an arbitrary number of orientations
without having to rotate the image before conducting
each test. We will give only a brief overview of the
method here and refer the reader to Liu et al. (2014) for
more details. Underpinning our use of these features is
an assumption that the acoustic reflection patterns from
the tissue do not depend upon the insonification angle.
While in general there are appearance variations with
insonification angle in ultrasound imaging, particularly
with highly reflective structures such as bone, we have
found that RIFs work well in practice in our applica-
tion.

RIFs are extracted from a circular region of the im-
age by convolving it with a set of complex-valued ro-
tation invariant basis functions. Each such convolution
yields a complex number, and together these numbers
describe the circular region. Taking the magnitude of
these complex numbers gives a description of the re-
gion that is analytically invariant to the orientation of
the underlying image region. 2D vector-valued image
representations, such as a gradient or motion field, can
also be described in this framework by first represent-
ing each vector as a magnitude-weighted delta function
in a continuous orientation histogram and expressing
this continuous histogram in terms of a truncated set of
Fourier series coefficients. Then, the same basis func-
tions can be used on these Fourier coefficients to yield
a set of complex numbers whose magnitudes are in-
variant to the orientation of the underlying image. A
set of basis functions can be described by its number
of radial divisions J and its maximum rotation order
K, and the number of Fourier coefficients M is a fur-
ther parameter of the feature extraction stage.

In this work, we experimented with using intensity,
intensity gradient and motion representations of the
frames, as well as combinations of these where fea-
tures from either set may be chosen by the split nodes
in the forests. We denote the set of complex-valued
RIFs that may be calculated from the image zt at image
location xt by the vector f(zt, xt). The split functions in
our random forests design are comparisons of the mag-
nitude of a single RIF from this set with a threshold, or
a comparison of the result of coupling two RIFs of the
same rotation order with a threshold.

Where applicable, the motion estimate used is the
one obtained for the state evolution model (§5). In or-
der to apply an approximate correction for the fact that
the motion patterns will depend upon the video’s frame
rate, we normalise the magnitude of the motion field
by the frame period before extracting features. Despite
being a crude approximation, we have found that this
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works well in practice. We believe that this is because
the random forests learn to look only for features that
encode very coarse motion patterns (i.e. roughly which
areas of the image patch are moving in roughly what
direction) rather than fine detail.

In order to make the feature extraction process as ef-
ficient as possible, we have implemented the algorithm
of Liu et al. (2014) with the following alterations1:

• Individual features are only calculated as they are
required by the random forests algorithm. Fur-
thermore, once calculated, individual feature re-
sults are stored so that they may be efficiently
used again if required later in the processing of
the same frame.

• Where the same feature is required for a large
number of image locations at once (typically at
nodes near the root of the trees), it becomes far
more efficient to implement the convolutions as
Fourier domain multiplications (via the 2D fast
Fourier transform). This requires the Fourier-
domain representations of the basis functions,
which we derive and present in the supplementary
materials.

• Images are scaled at training time and test time
such that the radius of the detection window is a
constant value, rRIF, across all samples. A small
window size results in faster calculations but may
result in loss of detail from the image patches be-
fore the RIFs are extracted. In practice we have
found that a relatively small value (around 30 pix-
els) can be chosen without significant loss of ac-
curacy.

6.2. Classification Forests
In order to detect and distinguish between the three

different views of the fetal heart given appearance fea-
tures from the image, we use a four-class classifica-
tion forest. In this case, the view label is a discrete
class identifier from the setV = {BG, 4C,LVOT, 3V},
representing the background, four-chamber view, left
ventricular outflow tract view and three vessel view re-
spectively. Accordingly, each leaf node consists of an
empirical discrete distribution over these labels. The
training objective function that governs which split
functions are chosen at the nodes during training is the
information gain (e.g. Criminisi et al. (2011)), which
measures the change in entropy between the label sets
before and after the split:

Iv(Sn,SL,SR) = H(Sn) −
∑

i∈{L,R}

|Si|

|Sn|
H(Si) (14)

1our C++ implementation using OpenCV is available at https:
//github.com/CPBridge/RIFeatures

where Sn is the set of labels in the nth node (being
trained), and SL and SR are respectively the sets of la-
bels in the left and right nodes after the proposed split.
H(·) represents the entropy of a set of discrete labels:

H(S) = −
∑
v∈V

p(v) log p(v) (15)

A forest consists of Ntrees trees, and training is
stopped after a maximum tree depth (dmax), or when
the number of training data in a node goes below
a threshold (Nnodemin), or when the information gain
from splitting goes below a threshold Iv,min. After
the classification forest has been trained, the result-
ing probability density function (PDF) is used straight-
forwardly as the first term of the observation potential
from Equation 13.

ψa(vt, xt | zt) = p (v = vt | f(zt, xt)) (16)

6.3. Circular Regression Forests

We use a circular regression forest to predict the car-
diac phase of the heart given appearance features from
the image. In this case the label is a real number φ in
the range [0, 2π). Because of the wrapped nature of cir-
cular variables, it would be incorrect to treat this task
as a standard regression problem. We therefore adapt
the random forests algorithm to deal with angular vari-
ables correctly.

Firstly we define a circular mean for a set of N an-
gular labels (Jammalamadaka and SenGupta (2001)):

φ̄ = atan2

 1
N

N∑
i=1

sin φi,
1
N

N∑
i=1

cos φi

 (17)

where atan2(·) is the four quadrant arctangent function.
We then use an approximate measure of circular in-

formation gain found by substituting the notion of a
circular distance from (Jammalamadaka and SenGupta
(2001)) in place of linear distance in the commonly-
used regression objective function.

Iφ(Sn,SL,SR) =
∑
i∈Sn

1
2

(
1 − cos(φi − φ̄Sn )

)2

−
∑

j∈{L,R}

∑
i∈S j

1
2

(
1 − cos(φi − φ̄S j )

)2

 (18)

where φ̄S j is the mean of the angular labels in set S j.
This cost function measures the difference between the
sum of squared distances from the mean in the node
before and after splitting, and therefore favours splits
that cluster similar angular labels together.

The leaf distribution in the case of the circular re-
gression forest is a von Mises distribution (also known
as the circular normal distribution, Jammalamadaka
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and SenGupta (2001)). This is a commonly used dis-
tribution when working with circular data, as it has a
convenient form and is the maximum entropy distribu-
tion for circular variables with a given circular mean
and circular variance. The distribution has two param-
eters: the mean angle µ and the concentration κ, where
µ and 1/κ are analogous to the µ and σ2 parameters
from the Gaussian distribution. The probability den-
sity function of the von Mises distribution is:

p(φ | µ, κ) =
1

2πI0(κ)
e κ cos(φ−µ) (19)

where I0(·) is the modified Bessel function of the first
kind and order zero. See Fig. 4 for examples of von
Mises PDFs. We refer the reader to (Jammalamadaka
and SenGupta (2001)) for further details on fitting a
von Mises distribution using maximum likelihood es-
timation.

We train one circular regression forest with Ntrees

trees for phase regression in each of the non-
background classes separately. The stopping criteria
were the same as for the classification forests, with an
appropriate information gain threshold Iφ,min. At test
time, the data point is passed down each tree in the rel-
evant forest until it reaches a leaf node, and the PDF is
then calculated for the cardiac phase value φt given the
distribution parameters (µb, κb) at that leaf node. The
second part, ψb(·), of the observation potential from
Equation 13 is then given by the averaged PDF across
the trees in the forest.

6.4. Orientation Regression Model

The orientation prediction step takes advantage of
the fact that the complex-valued image features (that
is, the raw feature values before the magnitude is taken
to give rotation invariance) are in fact equivariant un-
der rotation of the underlying image window. We can
therefore use the complex arguments of RIFs with a
rotation order of 1 (or -1) as an indication of the orien-
tation of the heart.

We find that it is not necessary to build new decision
forests for the task of orientation prediction. Rather,
the clustering that results at the end of the phase pre-
diction term is sufficient to give good results for ori-
entation prediction, even though it is not optimised for
this purpose. Therefore, after we have trained a phase
prediction forest, we simply fit an individual orienta-
tion prediction model to the data in each leaf node. For
each data point we calculate the offset angle between
the orientation label θi and jth complex feature f j(xi)
calculated at the image patch with centre xi to be

δi j = arg
(

f j(xi)
)
− θi (20)

We then fit a von Mises distribution (µc,κc) of this
offset angle across all the datapoints i in the leaf node
for each feature j of rotation order one, and choose the

feature j∗ that has the largest concentration parameter
κ. Then, at test time, the PDF at each leaf node, n, is
calculated using this chosen feature and its von Mises
distribution

p(θt | vt, f(zt, xt)) = p
(
arg

(
f j∗ (xt)

)
− θt | µc,n, κc,n

)
(21)

Again, the final part, ψc(·), of the observation poten-
tial from Equation 13 is found by averaging the PDF
predictions from the individual trees.

6.5. Observation Potential for Hidden Variables

Recall that at each resampling step in the particle fil-
ter, the particle weights are normalised to sum to unity.
This means that the values of the observation functions
only matter relative to the other particles in the set, and
the absolute values make no difference to the behaviour
of the overall filter. If there were no hidden particles,
this would mean that when the heart becomes hidden,
the filter would continue to track whichever area of
the image results in the largest observation potential,
regardless of the absolute value of those observation
function evaluations. As a result there would be no
easy way to decide whether the heart is visible in the
image or not.

For this reason, we re-weight the hidden particles
(those with ht = 1) with a small constant weight value,
whidden, that does not depend on the other state vari-
ables or image information (Equation 13). When the
majority of non-hidden particles receive a large weight
from the random forests, indicating that the random
forests are confident about the presence of a heart, the
weights of the hidden particles are relatively insignifi-
cant and most will not survive the next resampling step.
However, when most of the non-hidden particles are
given a small weight by the random forests, the fixed
weights of the hidden particles become relatively more
significant and may come to dominate the particle set.

The value of whidden controls the sensitivity of the
filter, and must be selected carefully to give the desired
behaviour.

7. Experiments

7.1. Experimental Data

We acquired a diverse dataset of 91 short ultrasound
videos of the fetal heart drawn from 12 subjects dur-
ing routine clinical scans using a GE Voluson E8 ul-
trasound device. Each video had a length of between
2 and 10 seconds and a frame rate between 25 and 76
frames per second, and contained one or more of the
three views of the fetal heart defined in §3. The videos
captured the healthy fetal heart in a range of magnifica-
tions and orientations, though with the heart taking up
approximately 30% or more of the image. There was
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Figure 4: PDFs of three von Mises distributions defined over the interval 0 to 2π shown in both polar (left) and
Cartesian (right) form. The µ parameter represents the mean angle, and the κ parameter describes the concentration
of probability mass around this mean.

a range of gestational ages from 20 to 35 weeks. All
videos were gathered such that the fetal head would be
towards the viewer when viewed on a screen, or were
flipped horizontally for consistency before being used
for training and testing.

Each frame of each video was manually annotated
according to the criteria shown in Fig. 1 in order to
provide labels for training and validating the model.
These annotations were approved by a clinician expe-
rienced in interpreting ultrasound videos of the fetal
heart (C. Ioannou).

7.2. Implementation Details
Our framework was implemented in the C++ pro-

gramming language using the OpenCV 3.1.0 and
Eigen 3.2.5 software libraries. Several processes were
parallelised using OpenMP compiler extensions of the
G++ 4.8.4 compiler. All timings were obtained on a
desktop computer (8-core Intel Core i7-3770 3.4 GHz
running a 64-bit OS).

7.3. Training
Due to the relatively small number of subjects, we

used a leave-one-out cross-validation procedure across
each subject. Specifically we tested every video in
the dataset with a model trained on the data from all
other subjects in the dataset. The training procedure
for each partition involved randomly selecting 5000
positive example windows for each of the three car-
diac views, and an equivalent number of background
examples from random image locations in the same
videos, but at least 0.3r from the labelled heart cen-
tre, where r is the heart radius. The selected examples
were used to train the view classification forest, ψa(·),
and then the positive examples from the relevant class
were used to train a phase regression model, ψb(·), and

Parameter Value
rRIF 30 pixels

Ntrees 8
dmax 10

Nnodemin 50
Iv,min 0.5 bits
Iφ,min 0.01

Table 1: Random Forest Training Parameters

Parameter Value
NP 1000

Nthresh 0.3NP

psame 0.9
Σ̂v1→v2 for v1 = v2 1.0 × I pixels2

τv1→v2 for v1 = v2 0.05 rad
υ 0.2 rads−1

φ̇min, φ̇max 100, 200 bpm
qh 0.3

ph→v 0.4

Table 2: Particle Filter Parameters

an orientation regression model, ψc(·), for each class
individually. Furthermore, a simple maximum likeli-
hood model was fitted for the various phase transition
distributions in §5 by finding view transitions in the
labelled videos. Other parameters for training the ran-
dom forest models and for the state evolution model
were chosen empirically and are shown in Tables 1
and 2. In particular, previous experiments (unreported)
have shown that increasing the number of trees in the
random forests does not significantly improve the ac-
curacy of the models, but does increase the execution
time due to the increased number of feature evalua-
tions.
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7.4. Validation Methodology
We evaluated the performance of our framework in

two variants: the first used just the observation poten-
tials at each frame individually with no particle filter-
ing, whilst the second used full temporal filtering.

For the variant in which just the observation po-
tentials were used, all image patches in each image
were passed through the classification forest and the
predicted position was chosen to be the patch with
the highest probability of having any of the non-
background labels. The predicted view label was cho-
sen to be the label giving this highest probability. The
predicted cardiac phase and orientation were then de-
termined using the phase/orientation forest at only that
image location and taking the mean of the resulting von
Mises distribution.

For the particle filtered variant, the particle filtering
model described in §5 was used with the parameter
values in Table 2, which were chosen by empirically
following previous experiments (unreported). A sin-
gle state prediction was determined at each time step
using the mean-shift algorithm on the particles. All re-
ported accuracy values were averaged over all videos,
with each video given equal weight regardless of its
length. In the particle filtered variant, accuracy values
from five test runs were averaged due to the inherently
stochastic nature of the filter’s output.

For the purposes of reporting accuracy, we con-
sidered the heart view to be correctly detected if the
predicted view label, v, matched the annotation and
the predicted heart centre, x, was within 0.25r of the
annotated centre. This corresponds to approximately
2.5 mm to 4.5 mm at the gestational ages we are con-
sidering. Error between the true and predicted val-
ues of the angular variables (orientation θ and cardiac
phase φ) was assessed using the following normalised
circular distance metric between two angles θ1 and θ2:

1
2

(1 − cos (θ1 − θ2)) (22)

giving a value in the range 0 (meaning precisely cor-
rect) to 1 (meaning an error of 180◦or π rad). Error
values for orientation and cardiac phase were only av-
eraged over frames where the view classification and
position were correctly determined.

The two variants deal with the possibility of the
heart being hidden in very different ways. When no
filtering is used the posterior detection probability of
the maximum class can be simply thresholded to de-
termine whether the heart is hidden. When filtering is
used, the prediction is instead based on whether the
total weight of ‘hidden’ particles is greater than the
total weight of ‘visible’ particles. These methods are
both sensitive to the relevant parameters, which are the
threshold value for the former case and the ‘hidden’
weight whidden in the latter. In order to give a fair com-
parison between the two algorithms, we conducted ini-

tial experiments with the most sensitive setting (thresh-
old of 0.0 and whidden = qh = 0.0 ), and then performed
a second experiment in which the threshold was varied.

7.5. Analysis of Inter- and Intra-Observer Variation

In order to place our results in context, we anal-
ysed the inter- and intra-observer variation of our an-
notations. Due to time contraints, a subset of the full
dataset consisting of 12 videos (one video from each
subject) was used for this purpose, however this was
deemed sufficient to quantify approximately the de-
gree of variation in the annotations. The annotations
were repeated on these videos by the same annotator
approximately 10 months after the initial annotations
to estimate the intra-observer variation. Additionally,
a second annotator was trained to annotate the videos
using the same guidelines and provide a third set of
annotations on the smaller dataset to estimate the inter-
observer variation. These new annotations were com-
pared to the ground truth annotations in exactly the
same way as the predictions from the automatic algo-
rithm.

8. Results and Discussion

We present results of the leave-one-out cross-
validation experiments in the two variants (with and
without filtering) and using a number of different sets
of features. Results are shown in Figs. 5, 6 and 8.

Figure 5 shows a comparison of results obtained us-
ing the full filtering framework (right hand plots 5b,
5d and 5f) and using the observation potentials alone
(left hand plots 5a, 5c and 5e). These plots show
computation speed per frame on the y-axis and pre-
diction error (in the relevant sense) with respect to the
manual ground truth annotations on the x-axis. Re-
sults for a number of different feature extraction meth-
ods are shown, and highlight that there is generally
a trade-off between speed and accuracy when choos-
ing the feature extraction method. All the results in
Fig. 5 where obtained using a threshold of posterior
detection threshold of 0.0 (for the unfiltered case) and
whidden = qh = 0.0 (for the filtered case).

The first pair of plots (Fig. 5a and 5b) show the
per-frame conmbined detection and classification error
rate averaged over every video in the cross-validation
regime, where this error rate is defined as the frac-
tion of ‘positive’ frames (those labelled as containing a
view of the heart in the ground truth) in which the heart
was either detected in the incorrect location (i.e. more
than 0.25r from the labelled centre location) and/or the
predicted view label was incorrect. The best feature
extraction methods are able to achieve under 20% error
rate on this challenging imagery. The second and third
pairs of plots respectively show the orientation (Fig. 5c
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and 5d) and cardiac phase (Fig. 5e and 5f) error rates,
defined using the normalised angular distance metric
(Equation 22) over only the frames with correct classi-
fication and detection. Again these are averaged over
all videos in the cross-validation regime. An ideal fea-
ture extraction method would be fast and accurate and
therefore appear close to the bottom left of all plots.

By comparing the plots in the left and right columns,
we can see that, for a given feature extraction method,
the addition of the particle filtering framework to the
random forest observations significantly reduces all
three of the error rates (for some feature extraction
methods the classification error rate can be reduced by
10 percentage points or more) at the expense of mak-
ing the algorithm slower by 5-10 ms per frame. The
speed reduction is primarily due to the need to calcu-
late the phase and orientation output values at a large
number of image locations, rather than a single loca-
tion (as is required by the observation potentials only
regime), and not due to the overhead of the filter im-
plementation itself.

We also see that the choice of features is another
important consideration, and all plots show a simi-
lar trend here. Using simple intensity features (dia-
mond markers) gives a very fast (<20 ms per frame)
but less accurate prediction over classification, orien-
tation and cardiac phase (e.g. with classification error
rates of around 50% or more), whereas using gradi-
ent features (triangle markers) gives a lower error rate
(e.g. around 30% classification error rate) and can run
only slightly slower at around 20 ms per frame. The
inclusion of motion features (circular markers) further
reduces the classification error rate to under 20% and
greatly improves the cardiac phase prediction (as might
be expected), but at the expense of a significant reduc-
tion in speed, resulting in speeds of around 25 ms per
frame. However even this lower frame rate (around
40 frames per second) is fast enough to process the
majority of ultrasound videos in real time. We also
tried using the monogenic odd filter as an alternative
image representation, as in our previous work (Bridge
and Noble (2015)), but found that this did not have
any advantages over the image gradient. Intensity fea-
tures tend to perform much better when more features
are available (high J, and K values). By contrast gra-
dient features only require a smaller number (around
J = 3,K = 3,M = 2) to give a sufficiently rich de-
scription, and there is little or no increase in perfor-
mance above this but a large reduction in speed.

The dashed vertical lines in Figure 5 show the ‘error
rate’ (i.e. disagreement) between the ground truth and
the annotations performed for a second time by the first
annotator (orange line) and by the second annotator
(magenta line), evaluated in the same way as the auto-
matic predictions. This gives us a target region for the
performance of our automatic method. We can see that
there is a significant disagreement between the differ-

ent sets of annotations, reflecting the highly ambiguous
nature of the annotation task. The performance of the
best automatic methods is in approximately the same
region as this agreement for the classification/detection
and cardiac phase prediction tasks, and slightly worse
for the orientation prediction tasks.

Figure 6 shows average confusion matrices for a few
representative parameter sets. It is clear from these
confusion matrices that the three vessel (3V) view is
the most commonly missed view, which is unsurpris-
ing given that its appearance is less distinctive than the
other anatomical two views. Furthermore, we see that
the majority of inter-class confusion arises between the
four chamber (4C) and left ventricular outflow tract
(LVOT) views, which is again unsurprising given the
sometimes ambiguous distinction between the views
when the probe is physically located in the space be-
tween the two.

In order to investigate the performance of the pro-
posed framework at detecting when the heart is hidden,
we performed a further experiment using a subset of
the feature extraction methods. By increasing the rel-
evant parameters (the detection threshold in the unfil-
tered case and the hidden particle weight in the filtered
case) it is possible to eliminate many false positive de-
tections, but there is inevitably a trade-off here with
the true positive classification rate. This is illustrated
in Fig. 8. For the filtered case we determined good val-
ues for the other parameters of the hidden particles via
pilot experiment (qh = 0.3, ph→v = 0.4) and kept them
constant during the experiment.

However, these figures are somewhat misleading, as
many of the frames that were labelled negative in the
training set in fact contained an obscured view heart
set. This can happen if, for example, the heart ap-
pears indistinct due to motion blurring or shadowing
artefacts. If the algorithm detects that such a frame
contains the heart, this is classified as a false posi-
tive and leads to a reduced performance. We there-
fore also evaluated the false positive rate using a differ-
ent set of “generous” labels, in which these borderline
cases were not considered incorrect if the position and
class was correct. The results are shown in Fig. 8 with
dashed lines, where it can be seen to reduce the false
positive rate.

Again, we compared the performance of the auto-
matic method to the agreement between the human an-
notators. The plotted points in Fig. 8 show the true
positive and false positive rates of the alternative sets
of annotations with respect to the ground truth set.
Whilst the algorithm approaches the performance of
the inter-observer variation, it is significantly worse
than the intra-observer variation when considering the
false-positive rate. Partly this reflects the fact that dif-
ferent annotators have different thresholds for when the
heart is ‘visible’, as it is very difficult to establish an
objective threshold.
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Figure 5: (a)(b) Classification/detection error, (c)(d) orientation error, and (e)(f) phase error versus time for a
selection of feature extraction methods. Each feature extraction method appears as a separate marker which
appears in the legend with the name of the image representation (int intensity, denoted by a diamond marker; grad
gradient, denoted by a triangle marker; or a combination of gradient and motion, denoted by a circle marker).
After each name the parameters of the basis function set are listed (number of radial profiles J, number of rotation
orders K and, where relevant, number of Fourier coefficients M). So, for example, int43 refers to using features
from an intensity representation with parameters J = 4 and K = 3, and grad543motion322 refers to a combination
of features from a gradient representation (parameters J = 5, K = 4, M = 3) with those from a motion field
representation (parameters J = 3, K = 2, M = 2). 15
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Figure 6: Average confusion matrices over videos for some parameter sets. Matrices are normalised such that
each row sums to one. Top row without filtering, bottom row with filtering. The heart was ‘missed’ if the location
of the detected centre was greater than 0.25r from the true centre.

Figure 7 shows the performance on two example test
sequences. The full sequences may be viewed in the
supplementary materials.

9. Conclusions and Future Work

In this paper we have presented a method for ex-
tracting key information from 2D ultrasound videos of
the fetal heart at high frame rates (average of about
40 frames per second for the best parameter sets). We
chose to use a particle-filtering based method to over-
come the intractability of the recursive state estima-
tion problem with our state definition, and employed
random forest based predictors as effective, discrimi-
native observation potentials. The use of a relatively
strong model of heart dynamics was found to signif-
icantly improve upon prediction on a frame-by-frame
basis. We validated our model on real data gathered in
a clinical setting, with promising results. Future work
should investigate ways to optimise systematically the
various parameters of the particle filter.

We hope that this paper will inform and inspire fur-
ther work towards providing automated tools for the
diagnosis of CHD from cardiac ultrasound videos. In
particular there are a number of open questions raised
by this work. Firstly it remains to be shown how the
information that we are currently able to extract can be
used to maximal benefit in clinical practice. We en-
visage three particular possible uses, the first is that
the information could be fed back live to the sonog-
rapher via on-screen graphical cues. This would be
particularly useful for trainee sonographers and would
enable them to confirm their own assessments of the

images and ensure that they have visualised all the cor-
rect views. Secondly, information about several scan-
ning sessions could be stored and sonographers’ scan-
ning habits analysed to be ensure that scans are being
conducted consistently. Thirdly, if the scan video is
stored for later review, the extracted information could
be stored alongside as metadata in order to enable easy
retreival of relevant parts of the video.

Further it remains to be shown how the model can
be extended to cope with, and identify cases of, CHD.
CHD represents a large variety of interacting abnor-
malities, and therefore this will likely entail a variety
of approaches. Some indicators of CHD may be de-
duced from the information the existing method pro-
vides with little or no extension. For example ab-
normal heart rate could be detected from our algo-
rithm, and abnormal cardiac situs or abnormal axis
(orientation with repect to the abdomen) could be as-
sessed by coupling this work with an abdomen detec-
tor. Other subtle or highly-localised problems, such as
small septal defects, abnormal alignment of valves or
vessel coarctation, are unlikely to affect the function-
ing of the algorithm and could be detected by further
learning-based processes that make use of the coor-
dinate system our framework can provide. More sig-
nificant problems, such as ventricular hypertrophy and
conotruncal anomalies, significantly alter the appear-
ance of the heart and will therefore require more sub-
stantial changes to the framework. This would entail
training the observation models and state update mod-
els with abnormal data, and then distinguishing abor-
mal cases either by extending the state vector to con-
tain these variables, or through secondary processes
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t = 1 t = 19 t = 87 t = 286 t = 317
(a) The algorithm finds and tracks the view label, position and orientation very quickly, and then tracks approximately the correct cardiac
phase after about 10 frames, including through changes in view label.

t = 1 t = 75 t = 91 t = 100 t = 308
(b) The filter correctly detects that the heart is not visible at the beginning of this sequence (the stomach is instead visible on the left of the
abdomen). When the heart appears, the filter is slow to pick it up but then begins to track correctly.

Figure 7: Results of the algorithm on two example sequences (in each sequence the top row shows the prediction,
and the bottom row shows the ground truth). See Figure 1 for the meaning of the annotations including the view
label colour scheme. Times shown are frame numbers. Parameters were as listed in §7 with whidden = 0.025, and
combined gradient and motion features with J = 3,K = 3,M = 2 were used. Additionally, the position of the
arrow head represents the position in the cardiac cycle (pointing outwards represents systole and pointing inwards
represents diastole). See the online supplementary materials for full video.
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Figure 8: True positive and false positive detection rates as the relevant parameter is varied for some typical
parameter sets. a) The unfiltered case where the detection threshold parameter is varied from 0 to 1. b) The
filtered case where whidden is varied from 0.00 to 0.01.

that operate on the estaimted heart location. Fortu-
nately however problems in this final class are typically
the easiest to detect without computer assistance.
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