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Abstract. Recently, a particle-filtering based framework was proposed
to extract ‘global’ information from 2D ultrasound screening videos of
the fetal heart, including the heart’s visibility, position, orientation, view
classification and cardiac phase. In this paper, we consider how to aug-
ment that framework to describe the positions and visibility of important
cardiac structures, including several valves and vessels, that are key to
clinical diagnoses of congenital heart conditions in the developing heart.
We propose a partitioned particle filtering architecture to address the
problem of the high dimensionality of the resulting state space. The
state space is partitioned into several sequential stages, which enables
efficient use of a small number of particles. We present experimental re-
sults for tracking structures across several view planes in a real world
clinical video dataset, and compare to expert annotations.

1 Introduction

Prenatal screening for congenital heart disease (CHD) is typically performed
using a two-dimensional (2D) ultrasound examination in the second trimester to
check for various structural and functional anomalies. However, because this is
specialist work requiring detailed knowledge of fetal cardiac anatomy, detection
rates are highly dependent on the sonographer’s experience [6].

In this work, we develop automated methods to localize key anatomical struc-
tures in freehand video footage gathered from a screening session. This could be
used, for instance, to feed back live information to a sonographer performing the
scan, used to develop training tools, or used as the basis of further automated
processes for diagnosis and quantification of CHD.

A few recent works have looked at automatically extracting information from
fetal screening ultrasound video streams [2, 3, 1]. Chen et al. [3] used a combina-
tion of a convolutional neural network (CNN) and a temporal recurrent neural
network to detect standard planes from fetal scans. Baumgartner et al. [1] also
used a CNN to detect various views of the fetus and coarsely localize a variety of
structures with a bounding box. In previous work focused on the fetal heart [2],
we used a particle filtering approach in order to capture the temporal structure
of the footage when estimating key variables in a robust, probabilistic manner.
In this paper, we build on the method presented in [2] and extend the particle
filtering framework to track a number of important cardiac structures.
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1. Apex.
2. Mitral Valve End.
3. Mitral Valve Center.
4. Crux Cordis.
5. Tricuspid Valve Cen-
ter.
6. Tricuspid Valve End.
7. Base.
8. Descending Aorta
(Center).
9. Spine.

1. Apex.
2. Aortic Valve.
3. Mitral Valve End.
4. Descending Aorta
(Center).
5. Spine.

1. Pulmonary Valve.
2. Ascending Aorta
(Center).
3. Superior Vena Cava
(Center).
4. Descending Aorta
(Center).
5. Spine.
6. Trachea (Center).

Table 1. Structures of interest

Though the approach is general, to place the current work in context we
focus on the same three views of the heart as [2]: the four chamber view (4C)
showing the two atria and two ventricles, the left ventricular outlfow tract view
(LVOT), showing the aorta leaving the left ventricle, and the three vessels view
(3V) showing the pulmonary artery, aorta and superior vena cava. Within these
views, we have selected a number of anatomical structures of interest (Table 1).

2 Partitioned Particle Filters

We first review the framework of [2] and then describe how we have extended
it. The particle filtering architecture in [2] tracks a state that captures ‘global’
characteristics of the heart at each frame t, specifically the heart’s visibility ht ∈
{0, 1}, image location of the heart center xt ∈ R2, heart orientation θt ∈ [0, 2π),
viewing plane classification vt ∈ {4C,LVOT, 3V}, a circular variable φt ∈ [0, 2π)
tracking the progress of the cardiac cycle, and φ̇t the rate of change of this
cardiac phase variable with respect to t.

This set of variables of heterogeneous types is grouped into the state tuple,
st. It is also assumed that the scale of the heart, represented by the radius r, is
known approximately at test time.

The filtering distribution, p (st | z0:t), over these variables at each frame, con-
ditioned on image evidence zt, is represented by a finite number, N , of particles,



s
(i)
t , i = 0, 1, . . . , N−1 with corresponding weights w

(i)
t . At each time step, a new

state value for each particle is sampled from a prediction potential ψ(st | st−1),
which is a distribution over the state value at time t + 1 given the state at
time t. Then each sample is reweighted according to an observation potential
ω(st, zt) that reflects the compatibility of the state hypothesis represented by
the particle with the observed image, and can be any non-negative function of
its arguments. The observation potentials are learned using the random forests
algorithm to perform classification and regression based on rotation-invariant
features (RIFs) calculated from the image [4].

To extend [2] to structure tracking we extend the state tuple to contain vari-
ables relating to the locations of specific structures of interest. As a result, the
localization procedure for the structures is able to use and influence the predic-
tions of the global variables. However, this results in a very high dimensional
state space. Particle filters typically do not perform well in such high dimensional
spaces because a very large number of particles is needed to adequately cover the
space and maintain a good approximation to the true filtering distribution [5].

This problem can be overcome by grouping the state variables into partitions,
which can then be operated on in sequence [5]. We refer to MacCormick and
Isard [5] for a rigorous explanation, but intuitively a state vector/tuple can be
partitioned if both the following conditions apply:

1. The prediction potential for the variables in a given partition is (or may
be assumed to be) independent of variables in later partitions (but may be
conditioned on values for variables in earlier partitions). This means that
the prediction step may take place for each partition before the updated
values for variables in later partitions are known.

2. The observation potential for the variables in a given partition is (or may
be assumed to be) independent of the variables in later partitions (but may
consider the variables in earlier partitions). Therefore the particles may be
reweighted and resampled according to each observation potential in turn.

The key insight into the advantage of the partitioned particle filter is that by
operating on the partitions in sequence, the particles are guided into the peaks
in the filtering distribution of each partition in turn. Consequently, a partitioned
particle filter may make more efficient use of a small number of particles and
operate in high dimensional spaces with a reasonable number of particles.

Although the two criteria are quite restrictive, the particle filter in [2] may be
naturally broken into three partitions: one containing the visibility ht, location
xt, and view vt; a second partition containing the cardiac phase φt and phase
rate φ̇t; and a third containing the orientation θt. The independence assumptions
made in [2] mean that the two criteria are satisfied with no alterations to the
observations or prediction potentials. The classification forests are independent
of the cardiac phase variable by virtue of their training on a dataset containing
heart examples from across the cycle. Furthermore both the classification forests
and phase regression forests are orientation invariant as a result of using RIFs.

The filter presented in [2] may therefore be reformulated into three partitions
to give the filtering architecture in Fig. 1. We introduce the shorthand subscript
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Fig. 1. Partitioned reformulation of filter architecture for tracking ‘global’ heart vari-
ables. The form of this diagram follows the convention used by [5] and shows the
sequence of operations performed on the particle set within a single timestep. The
round edged boxes represent distributions in the form of particle sets. The hexago-
nal boxes represent operations on each particle in the particle set: the ‘∗’ represents
convolving the particle set with the prediction potential and the ‘×’ represents mul-
tiplying the particle weights by the observation potential. The square box containing
the ‘∼’ represents the resampling operation across the entire particle set. The black
dotted lines indicate routes taken only by ‘hidden’ particles (those with h = 1) and
the colored dotted boxes contain the operations within a single partition (one color per
partition). The break at the † symbol marks the location where extra stages are added
for structure tracking in §4.

notation ψh (·), ψv (·), ψx (·), ψθ (·), ψφ (·), ψφ̇ (·) for the prediction potentials
relating to the six variables, which are as defined in [2]. The observation poten-
tials ωA (·), ωB (·), and ωC (·) are identical to ψa (·), ψb (·), and ψc (·) respectively
from [2], and are based on random forests using RIFs. In §4, we will extend this
architecture to use an additional partition for each structure of interest.

3 A Fourier Model For Structure Trajectories

Due to the nature of the cardiac cycle, over a short time interval the positions
of the structures are likely to be close to periodic. Furthermore, an estimate of
the cardiac phase variable, φt is available from the output of the global variable
prediction. Rather than estimate a structure’s position over the cardiac cycle in
each frame independently, a Fourier model is used to capture this behavior.

In this model, the position of structure a ∈ N0 (where a is an index variable
indexing the various structures (Table 1)) in the image at time t is described
by the 2D column vector qa,t ∈ R2 containing the x and y components, i.e.

qa,t =
[
qa,t,1, qa,t,2

]T
, where qa,t,1 ∈ R is the x-component and qa,t,2 ∈ R is the

y-component. Firstly, this is expressed relative to the heart center position, xt,



orientation, θt, and scale, r, to give the relative position vector pa,t ∈ R2, where
the two are related by:

qa,t = rR[θt]pa,t + xt (1)

where R[θt] ∈ R2×2 is the 2D rotation matrix through angle θt.
The relative position vector pa,t is calculated from the current value of the

cardiac phase variable, φt, by assuming a truncated Fourier series approximation:

pa,t =



ca,1,1 ca,2,1
ca,1,2 ca,2,2
ca,1,3 ca,2,3
ca,1,4 ca,2,4
ca,1,5 ca,2,5

...
...



T

·



1
cosφt
sinφt

cos 2φt
sin 2φt

...


(2)

=
[
ca,1 ca,2

]T · φt (3)

Given a short sequence of frames (covering a few cardiac cycles), the coeffi-
cients in the column vectors ca,1 and ca,2 may be found using a simple regularized
least squares approach, where a prior variance λ is placed on the values of the
coefficients with the exception of the zero order coefficients (ca,1,1, and ca,2,1),
which together encode the mean position of structure over the whole cycle.

4 A Filtering Architecture for Structure Localization

We now show how the partitioned architecture in Fig. 1 can be extended to track
structures. The basic idea is to include one new partition in the particle filter
for each structure, with the partitions for the structures belonging to each of the
three views grouped into one ‘path’ through the filter. This is shown in Fig. 2.

Each partition is identified by the index, a, of the corresponding structure.
The Fourier model from §3 is used and the structure’s position is assumed to
be fixed given the coefficient vectors ca,1,t and ca,2,t. However, these coefficient
vectors are allowed to vary gradually over time. For notational convenience, the
vectors are combined into a single coefficient vector c̃a,t ∈ Rda . Additionally,
there is a binary visibility variable ga,t for the structure that indicates whether
the structure is visible or hidden due to the being obscured by an imaging artifact
or being located off the edge of the image. The ga,t and c̃a,t variables for each
strucure are incorporated into the state tuple st. We now define the prediction
and observation potentials in Fig. 2.

4.1 Structure Visibility Prediction Potential, ψga (st | st−1)

The visibility prediction potential for each structure’s visibility variable operates
in exactly the same way as that for the heart visibility in [2]. There is a fixed
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Fig. 2. Filter architecture extension for tracking structures. This is added to the ar-
chitecture in Fig. 1 by inserting it at the dagger ‘†’ symbol. The three paths through
the filter relate to the three views (4C, LVOT, and 3V) of the heart. Structures with
indices 1, 2 and 3 are shown as belonging to the three different views, but this is just
an illustrative example and may not be the case in practice. S4C, SLVOT, and S3V are
the sets of structure indices in the three views (Table 1).

probability ph→v of moving from hidden to visible and vice versa pv→h. These
are chosen to give a certain fraction of hidden particles at equilibrium.

4.2 Structure Position Prediction Potential, ψc̃a (st | st−1)

At training time, a mean vector µ̃a ∈ Rda and covariance matrix Σ̃a ∈ Rda×da
is calculated for the coefficient vector c̃a,t, assuming a multivariate Gaussian
distribution. The prediction potential is assumed to be a linear transition fol-
lowed by additive Gaussian noise on the centered coefficient vector to allow the
coefficients to vary smoothly during the video, i.e. of the form

(c̃a,t+1 − µ̃a) = A (c̃a,t − µ̃a) + Gnt (4)

In order to ensure that the limiting distribution of the resulting Markov chain
is the same as the prior distribution, the update matrix is set A = αI where
α ∈ [0, 1], the covariance of the noise vector nt is set to be Q = Σ̃a, and the
noise scaling is set to be G = γI, where γ ∈ [0, 1] and 1 = α2 + γ2.

4.3 Observation Potential, ωDa (st, zt)

The observation potential finds a score for the likelihood of structure a appearing
at location qa,t in the image. This uses a random forest classifier trained on the
chosen structures and a background class, using the same rotation invariant
features as the view classification forest, and the observation potential for a
given structure is the posterior probability classification score for that structure
at the relevant location. Hidden particles are given a small fixed score Ωhidden.



5 Experiments and Results

We validated the proposed approach on the clinical dataset of fetal heart scan-
ning videos used in [2], containing 91 videos from 12 subjects. We followed a
similar leave-one-subject-out cross-validation in which all learned parameters
are trained over 11 subjects, and the model is evaluated on the 12th subject. We
used the manual annotations of the ‘global’ variables of interest from [2], and
extended these to include structure locations. Pre-trained models from [2] were
used for the observation and prediction potentials for the ‘global’ variables.

The additional models to train for each cross-validation fold included the
µa and Σa parameters for each structure and the structure forest, ωDa (·). The
µa and Σa parameters were fitted to sequences of one cardiac cycle in length
cut from the videos. All possible such sequences in the training set were used.
The structure forests (ωDa (·)) were trained using 5000 patches containing each
structure, and an equivalent number of randomly-selected background patches.
The image features shared by all forest models form an RIF feature set with
J = 4 radial profiles, maximum rotation order K = 2, and Fourier expansion
order M = 2 (see [4] for more details). Only features from the central two radial
profiles were used in the structures model, so that the effective patch size of the
structures detection forest is half the heart radius, r/2.

For testing, we used the following parameter values: ph→v = 0.35, pv→h =
0.15 (giving an equilibrium with 0.3 of the total number of particles hidden),
Ωhidden = 0.05, γ = 0.3, λ = 1. All random forest classification, phase regression,
and structure localization models used 16 trees with a maximum depth of 10.
The order of the Fourier models (§3) was set to 3.

Figure 3 shows the localization error for the structures when point estimates
of position are found from the particle set via mean-shift. Those structures whose
location is clearly defined by image features (such as the valve centers and ves-
sels) are generally well localized, whereas the most poorly localized structures
are those whose location in the image is ambiguous (e.g. the ends of the valves,
the base and the apex). We observed that errors in the heart orientation signif-
icantly increased the average localization error. The average computation time
per frame was 39.5 ms (25 frames per second) on a desktop PC (Intel i7-3770
3.40 GHz, 8 threads, 32 GB RAM), suggesting that this approach is well-suited
for real-time applications3. Examples can be found in the supplementary video.

6 Conclusions

In this paper we have presented a fast method for fully automated tracking
of anatomical structures in ultrasound videos of the fetal heart and presented
results on a clinical dataset. Future work will include understanding behavior in
the presence of heart abnormalities and the application of this work in support
of sonographers in scanning and automated diagnosis.

3 Our C++ implementation is available at https://github.com/CPBridge/fetal_

heart_analysis
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Fig. 3. Mean distance errors between estimated location and ground truth locations
for each structure over all videos. The distance is normalized by the heart radius r.
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